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ABSTRACT 

We have developed a mültimodeling object-oriented 
(00) simulation environment (MOOSE), which is a 
framework for modeling and developing simulation 
software. Its architecture derives from Object Ori- 
ented Physical Modeling (OOPM), which extends 
classical object-oriented methodology to allow attri- 
butes and methods to take on models as values. The 
MOOSE Model Repository (MMR) allows distribu- 
ted model definitions, and so supports "web-based 
simulation", integrated with the web and made avail- 
able on the Internet. MOOSE features mültimodel- 
ing, an 00 approach to model refinement and ab- 
straction, allowing creation of heterogeneous hierar- 
chical models. Dynamic models comprising multi- 
models include Finite State Machines, Functional 
Block Models, Equation Constraint Models, and Rule 
Based Models. MOOSE emphasizes visualization, & 
effective use of 00 metaphors to connect conceptual 
model to program, and to capture model geometry 
and dynamics. The MOOSE human-computer inter- 
face has two GUI's: Modeler, for model design, and 
Scenario, for model execution control and visualiza- 
tion. MOOSE back end generates a model description 
in a target language such as C++, then translates and 
adds runtime support to form an Engine. Model exe- 
cution consists of Engine running synchronously with 
Scenario. The MOOSE approach facilitates model 
development, models with greater intuitive appeal, 
communication among model authors, better agree- 
ment between simulation programs and their concep- 
tual models, component reuse, and model/program 
extensibility. 

1     INTRODUCTION 

The World Wide Web (often just referred to aS "the 
web") represents a fertile area for computer simula- 
tion research. Combining the web with computer sim- 
ulation can have a key impact on future simulation 

research. Among the directions one can take in this 
endeavor are (1) parallel and distributed model exe- 
cution, and (2) distributed model repositories. Both 
these avenues are fruitful. We have narrowed our 
focus to the area of distributed model repositories 
since there has been less research in this area than in 
the more mature field of distributed simulation (Fuji- 
moto, 1990; Lin and Fishwick, 1996). Also, the con- 
cept of model repository lends itself to the study of 
how to organize model information. Since the web 
is also concerned with how to effectively organize in- 
formation, this appears to be a reasonable way to 
blend the web with simulation. The web defines a 
networked hypermedia approach to storing informa- 
tion. Search engines exist to help a user browse or 
perform a topical search. In simulation, information 
is generally focused on physical objects. These phys- 
ical objects, whether they are humans, milling ma- 
chines or a container of fluid, have attributes and ex- 
hibit behaviors. If we are to permit a situation where 
physical object information is as freely available as 
hypermedia to remote users on today's web, then we 
need to (1) formalize this information, (2) provide 
a way to integrate to today's web-based information, 
and (3) effect mechanisms for searching and browsing 
models. In this paper we explore these three issues in 
the context of OOPM and MOOSE. 

MOOSE is an acronym for "Multimodel Object 
Oriented Simulation Environment", a modeling and 
simulation framework under development at Univer- 
sity of Florida. MOOSE is an implementation of "Ob- 
ject Oriented Physical Modeling" (OOPM) (Fishwick 
1996), which is an approach to modeling and simu- 
lation which defines a formal approach to capturing 
physical knowledge in a form that extends the object 
design principles specified in the fast-growing area of 
object design within software engineering and pro- 
gramming language design (Booch, 1994; Rumbaugh 
et al., 1991) Some of the current object-oriented de- 
sign methodology requireß modification to support 
physical modeling.    Moreover, there does not cur- 



rently exist a clearly-defined method of capturing 
physical knowledge in an object-oriented modeling 
framework even though many of the object-oriented 
"nuts and bolts" exist to help structure the method. 
The OOPM methodology satisfies the requirement of 
development of a theoretical framework for physical 
modeling, while allowing for legacy code insertion and 
user-defined dynamic model and multimodel types. 

Initial development of MOOSE, focussed on an en- 
vironment consisting of a single host system, has been 
completed, with results reported in detail by Cubert 
and Fishwick (1997a). The next step, now under- 
way, involves expanding the environment to permit 
model definitions to be distributed over any number 
of hosts within the framework of the worldwide web. 
There are two kinds of distributed operation to con- 
sider: one is where model definitions are distributed, 
with some classes defined here, others there; the sec- 
ond is where model execution proceeds as a distribu- 
ted simulation, executing simultaneously on a number 
of hosts, with one object instantiated here, another 
there. The MOOSE architecture supports both kinds 
of distributed operation; with our emphasis being on 
distributing definition of multimodels. 

We first briefly summarize some of MOOSE's fo- 
cal ideas and properties, such as use of multimodels 
to facilitate model refinement to achieve appropri- 
ate levels of model fidelity, use of dynamic models, 
and reuse by design. Fuller treatment of these top- 
ics, as well as issues such as how MOOSE captures 
the geometry of a model, relation between concep- 
tual model and simulation program, relations such 
as aggregation, containment, composition, usage, as- 
sociation, generalization, and specialization, valida- 
tion and verification, extensibility, speed of develop- 
ment, and platforms and portability, have been ad- 
dressed by the authors elsewhere (Cubert and Fish- 
wick, 1997b). After presenting background on the 
components of MOOSE and how they interact, in suf- 
ficient detail to orient the reader, the major emphasis 
will focus on MOOSE Model Repository (MMR), be- 
cause this is the vehicle which expands the horizons 
of MOOSE to the limits of the web. 

Thus the balance of the paper is organized as fol- 
lows. In Section 2 we briefly present focal issues such 
as multimodels, dynamic models, and reuse. Section 
3 covers the components of MOOSE and how they 
interact. Section 4 goes into detail on MMR and dis- 
tributed operation. Section 5 presents our conclu- 
sions and directions for future work. 

2     MULTIMODELS, DYNAMIC MODELS, 
AND REUSE BY DESIGN 

Derived from OOPM principles, MOOSE promises 
not only to tightly couple a model's human author 
into the modeling and simulation process through an 
intuitive human-computer interface (HCI), but also 
to help a model author to perform any or all of the 
following: (1) to think clearly about, to better un- 
derstand, or to elucidate a model; (2) to participate 
in a collaborative modeling effort; (3) to repeatedly 
and painlessly refine a model as required, in order 
to achieve adequate fidelity at minimal development 
cost; (4) to painlessly build large models out of ex- 
isting working smaller ones; (5) to start with a con- 
ceptual model which is intuitively clear to domain ex- 
perts, and to unambiguously and automatically con- 
vert this to a simulation program; (6) to create or 
change a simulation program without being a pro- 
grammer; (7) to perform simulation model execution 
and to present simulation results in a meaningful way 
so as to facilitate the other objectives above. 

The degree of detail in a model reflects the model 
author's abstraction perspective (Fishwick, 1988). 
Refinement to greater detail is used to obtain model 
fidelity that is adequate in the eyes of the model 
author from a given abstraction perspective (Fish- 
wick 1989), and with certain objectives for the model 
or simulation to meet (Berzins 1986). MOOSE ad- 
dresses this area with multimodeling, an approach 
which glues together models of the same or differ- 
ent types, produced during the activity of model re- 
finement, and reflecting various abstraction perspec- 
tives (Fishwick and Lee, 1996). Refinement can be 
adjustable during model execution as well as dur- 
ing model design. The pieces that are put together 
to form a model, such as described above, are dy- 
namic models. Dynamic model types supported in- 
clude Finite State Machine (FSM), Functional Block 
Model (FBM), Equation Constraint Model (EQN), 
and Rule-based Model (RBM); alternatively, users 
may create their own C++ "code models"; model 
types may be freely combined. The dynamic model 
types implemented so far form a popular collection of 
approaches used in simulation (Fishwick, 1995); ad- 
ditional dynamic model types will likely be added to 
the MOOSE repertoire; MOOSE has been designed 
to be extensible in this regard. In addition to model 
refinement during development, multimodeling may 
also be used during model execution: components of 
a multimodel may be behaviorally abstracted to fit 
time constraints placed upon model execution. 

In MOOSE, dynamic behavior of the system is 
represented by dynamic models. Dynamic models 
are methods of the various classes in the conceptual 



model. Dynamic models are readily added, changed, 
and removed, as part of model development, at any 
time. Here MOOSE makes good its promise to the 
model author to be able to create or change a simula- 
tion program without being a programmer. MOOSE 
presently incorporates several kinds of dynamic mod- 
el: FBM, FSM, EQN, and RBM, with others contem- 
plated, such as Petri nets, and System Dynamics 
models. From this ensemble of popular and capable 
dynamic model types, the model author picks one or 
more dynamic model types to define methods of the 
classes of the model. Construction of each specific dy- 
namic model typically involves drawing the kinds of 
"pictures" that people tend to make on the back of an 
envelope or a blackboard when informally describing 
a model to someone else. The MOOSE HCI facili- 
tates these constructions: allowing the model author 
to specify components, connect components, provide 
inputs, outputs, conditions, and so forth. 

To support the kind of heterogeneous model hi- 
erarchies shown abstractly in Figure 1, we must en- 
sure that our models are closed under coupling. In 
short, this suggests that the method of coupling one 
model component to another must be clearly defined. 
Two kinds of coupling exist: intralevel and inter- 
level. Intralevel coupling reflects model components 
coupled to one another in the same model. For ex- 
ample, one needs to specify rules of how Petri nets, 
compartmental models and System Dynamics graphs 
are formed. With a System Dynamics graph, a rule 
of model building defines that any level has an in- 
put rate and an output rate. A more interesting 
case arises in interlevel coupling since we must en- 
sure that we define rules as to how model components 
from one model can be refined into models of differ- 
ent types. Can a finite state machine state be refined 
into a Petri net, or can a functional block model con- 
tain finite state machines (FSM) inside blocks? What 
are the rules to guide this refinement? The rule for 
intralevel coupling is based on functional composi- 
tion. The primitive of function with its input and 
output defines the coupling procedure in the following 
way. All models are encapsulated in a single function. 
This represents the outer shell to support interlevel 
coupling. Within a model there are functional en- 
try points. These are inner shells where new models 
may be optionally inserted. Each model type has its 
own entry point defined differently. For example, for 
the model type "FSM", we may define each state to 
be of the form: v(state) = /() where /() is an arbi- 
trary function and v(state) defines the value of the 
attribute state. If state is not refined, then /() re- 
turns the value of the state as a character string or 
integer. If state is refined, then /() may be replaced 
by any function—whether this function is a dynamic 

Figure 1: Multimodeling Tree Structure for Model 
Refinement; Polygons Depict the Heterogeneous Na- 
ture of Multimodeling: each type of Polygon repre- 
sents one type of Dynamic Model 

model or a code method. The coupling approaches 
are defined in more detail by Fishwick (1997). 

Reuse of one's own previous work, as well as by 
one model author of the work of others, is encouraged 
by availability of model repositories. An application 
framework such as MOOSE is more than just a class 
library. In an application framework, classes from the 
library are related in such a way that a class is not 
used in isolation but within a design encouraged and 
supported by the framework. The MOOSE Model 
Repository (MMR) is aptly named because it is not 
just a class library; as a model repository, it stores not 
only a collection of classes available for reuse, but also 
the design which relates those classes as to how they 
play together within the geometry and dynamics of 
a particular model. This enables support for one of 
Booch's (1994) five attributes of a complex system: 
"A complex system that works is invariably found to 
have evolved from a simpler system that worked .... 
A complex system designed from scratch never works 
and cannot be patched up to make it work.". Using 
MMR, model authors can start from some piece of 
their overall system that happens to appeal to them 
intuitively. When several such pieces are working, 
they may be combined into a more-complex (working) 
system. 

3     COMPONENTS OF MOOSE 

Components of MOOSE fall into three groups: Hu- 
man Computer Interface (HCI), Library, and Back 
End. The HCI is comprised of two components: Mod- 
eler and Scenario. Modeler interacts with the human 
model author via graphical user interface (GUI) to 
construct the model. In simulation parlance, this 
is model design. Modeler .relies on the Library (dis- 
cussed below) to store model definitions. Scenario is 
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Figure 2: The three Components of MOOSE (HCI, 
Libraxy, and Back End) shown outlined with dashed 
line Boxes; Parts within each Component are shown 
outlined with solid Boxes 

a visualizer employing a GUI. Scenario activates and 
initializes simulation model execution (which we call 
Engine) at the behest of user (who may or may not 
be the original model author). Scenario maintains 
synchronous interaction with Engine, visualizing En- 
gine output in a form meaningful to user, optionally 
allowing user to interact with Engine, including mod- 
ifying simulation parameters and changing the rate of 
simulation progress. 

Modeler GUI's "main" part defines classes and 
objects and relations among classes (aggregation and 
specialization or generalization) on one or more can- 
vases. On the canvas, rectangles represent classes. 
These rectangles are joined by relations to form a tree, 
or, more generally, a graph, reflecting relations in the 
system being modeled. Some models look cleaner if 
aggregations and specializations are kept on separate 
canvases; this is supported but not required. Simi- 
larly, some models are large enough that several can- 
vases are needed to capture the representation. Each 
class is a box which, when opened, reveals more in- 
formation, and permits the model author to define 
the name of the class, its attributes, its methods, and 
its named objects. Within each method, the model 
author may specify input parameters and output pa- 
rameters, as well as identifying which dynamic model 
type the method is to be. In addition to the "main" 
GUI presented above, there is a GUI editor for each 
dynamic model type, i.e.: the FSM editor for finite 
state machines, the FBM editor for functional block 
models, the EQN editor for equation constraint mod- 
els, and the RBM editor for rule-based models. 

The Back End has two components: Translator 
and Engine. Translator is a bridge between model 
design and model execution: Translator reads from 

the Library a language-neutral model definition pro- 
duced by Modeler, and emits a complete computer 
program for the model, in Translator Target Lan- 
guage (TTL). Presently MOOSE TTL is C++; po- 
tentially, TTL can be Java or another language. This 
simulation program emitted by Translator in TTL 
is called Engine. Once compiled and linked with 
runtime support, the Engine executable is activated 
under control of Scenario to perform model execu- 
tion. Library has two components: MOOSE Model 
Repository (MMR) and MOOSE Object Store (MOS). 
MOS holds object data and MMR holds object meta- 
data. MMR keeps track of models as they are be- 
ing built. MMR servers provide a database manage- 
ment system (DBMS) for model definitions. MMR 
clients work with Modeler and Translator to define 
and use model definitions. Models and model com- 
ponents created by other model authors (or the same 
model author previously) are available for browsing, 
inclusion, and/or reuse. Base classes such as sets for 
modeling collections and popular geometries for spa- 
tial models are available to the model author. An 
MMR client can simultaneously maintain conversa- 
tions with several MMR servers on different hosts, 
thus permitting model definitions to be distributed. 
An MMR Server can simultaneously maintain con- 
versations with several MMR clients, on the same or 
different hosts, which permits collaboration on model 
development. MOS does for objects much of what 
MMR does for models. MOS works with Engine and 
Scenario, in similar fashion to the way MMR works 
with Modeler and Translator. MOS manages object 
persistence. The architecture permits MOS to be 
capable of distributed operation, just like MMR, al- 
though this is not our focus in MOOSE. 

4     MOOSE MODEL REPOSITORY (MMR) 
AND DISTRIBUTED OPERATION 

There are two kinds of distributed operation to con- 
sider: one is where model definitions are distributed, 
with some classes defined here, others there; the sec- 
ond is where model execution proceeds as a distrib- 
uted simulation, executing simultaneously on a num- 
ber of hosts, with one object instantiated here, an- 
other there. The MOOSE architecture supports both 
kinds of distributed operation; the present implemen- 
tation supports distributing definition of multimod- 
els, as this is our primary research focus. 

The MMR originated in a perceived need which 
arose in the stand-alone version of MOOSE to un- 
burden the Conceptual Modeler in the MOOSE HCI 
from maintaining complex structures and relations 
among classes, objects, attributes, methods, and pa- 
rameters. Originally, the model definition provided as 



output of the HCI was a set of flat text files, similar 
in sortie ways to the HTML (hypertext mark up lan- 
guage) now ubiquitous on the web. We had already 
developed in the MOOSE Translator a capability to 
read and parse this model definition and build the 
aforementioned structures and relations, so it was a 
relatively simple matter to reuse this code, and add 
a sockets-based (TCP) communications layer. This 
effort not only succeeded, it also paved the way for 
extending the horizon of MOOSE from stand-alone 
system to web operation. Along the way, we kept the 
flat file format we had designed, and thus preserved 
the capability to load the MMR from one or more 
sets of flat files describing any numbers of previously- 
constructed models. This capability now makes it 
easy for an MMR to import model definitions cre- 
ated or modified by hand, which are easy to handle, 
transmit, and modify because of the flat text file for- 
mat. We back up the MMR into this format; we 
dump model definitions into this format. While the 
format can be readily machine generated, it is also 
amenable Oust like HTML) to being edited by hand 
with one's favorite text editor. 

The MMR has a client/server architecture, with 
each MMR server maintaining a database of model 
definitions. MMR is in some ways is patterned after 
the CORBA (Common Object Request Broker Ar- 
chitecture) HI (Interface Repository) (Orfali, 1996). 
MMR as a MOOSE component does its part to sup- 
port an overall model/view architecture, with mul- 
tiple views being possible for a single model, and 
similarly, with multiple models being present in a 
single view. In the original stand-alone mode, the 
clients were the MOOSE Conceptual Modeler and 
the MOOSE Translator, with the Conceptual Mod- 
eler updating the MMR server, and the Translator 
querying it in order to emit Engine code in TTL. 
There was one MMR server, and it was co-located on 
the same host with the two aforementioned clients. In 
web-wide operating mode, MMR servers can be any- 
where, can exist in any number, and can be shared; if 
each host has an MMR server, then the system offers 
greatest robustness in the face of network outage, but 
the architecture does not require it. MMR clients will 
usually be MOOSE HCI's and Translators; several 
HCI's located far from one another may collaborate to 
share and reuse model components; or, several Trans- 
lators located far apart and unaware of one another's 
existence can be interested in using the same model 
or component definition. However, it is also part of 
the plan to expose an interface for other clients, which 
may be programs of any kind, including perhaps web 
browsers or other programs. This open architecture 
invites use of distributed model definitions outside of 
MOOSE to broader realms, as a more general object- 
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[ Client transport service 
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Server transport service 

Request handler     I 

[ Back end ] 

Figure 3: MOOSE Model Repository (MMR) Inter- 
nals; Client above, Server below, each surrounded 
with dashed line; detail in accompanying text 

oriented application framework. Time will tell if this 
idea will gain acceptance. The underlying MMR de- 
sign is independent of whether MOOSE operates in 
stand-alone mode, or with clients and servers in any 
number and located far apart. 

We now examine the MMR architecture which ap- 
pears in Figure 3. Clients communicate with MMR 
using client side support. Two API's are shown: one 
for C++ code and one for TclTk, which support our 
Translator and HCI, respectively. Other API's are 
possible, should support for client code in other lan- 
guages be needed. The client side support is layered 
as shown. Presently, our client side support is rel- 
atively thin. The diagnostic driver, providing built 
in support for test and development, is GUI-based, 
and allows developers and system maintenance tech- 
nicians to operate the interface to the MMR server 
without a client program, permitting tests of Proxy 
and Client transport layers of client side support, as 
well as all of the server. The client communicates 
with the server using sockets, which are supported 
in both our platforms of choice (Windows NT and 
Solaris Unix), enabling client and/or server to be 
positioned on either platform with complete trans- 
parency. Sockets work whether clients and server are 
located on the same or different hosts. Client trans- 
port service is written in TclTk in a style which ap- 
plies the 00 principles available (encapsulation and 
information hiding). Server transport service is writ- 
ten in C++ with class names such as Sockets, Hosts, 
and Circuits. Proxy's counterpart on the server side is 
Request handler. Proxy and Request Handler work 
together. To the extent that we want to stage or 
cache information on the client side, this is hidden 
within Proxy. As previously stated our intent is a thin 
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Figure. 4: MOOSE Model Repository (MMR) as de- 
ployed on the Web; Dashed line is Firewall, above 
which is an Intranet; Heavy double line represents 
the Internet 

client, but the presence of Proxy provides the ability 
to "thicken" the client side in the interest of perfor- 
mance, should that become necessary. Finally, the 
Back end provides data structures, linkage, and rela- 
tions for classes, objects, attributes, methods, param- 
eters, aggregation, association, containment, general- 
ization, specialization, and inheritance; in short, the 
things one needs to know about a conceptual model. 

Server Transport Service incorporates the initial 
sequence: create socket, set nonblocking, bind, and 
listen. Then periodically two activities are performed: 
accepting new connection requests, and servicing re- 
quests on existing connections, with priority given to 
the latter, and round-robin service policy. A dynam- 
ically-allocated self-expanding list of virtual circuits 
(connections) is maintained, so that an MMR Server 
can maintain any number of conversations with any 
number of clients and keep them all separate. Client 
Transport Service functions with send/receive pairs. 
Its receive is nonblocking; when there is no reply, the 
code is able to distinguish end of file from no data yet. 
This permits a client to retrieve long multi-message 
responses, and never to block. An interesting exam- 
ple of code reuse of the Client and Server Transport 
Services is this code also serves to synchronize Sce- 
nario and Engine, with Client Transport Service em- 
bedded into Scenario and Server Transport Service 
included in Engine runtime support. 

Having examined MMR internal architecture, we 
now turn to two external views of MMR: first, the 
original stand-alone MOOSE which runs all processes 
on one host; second, distributed MOOSE which per- 
mits any number of MMR clients, any number of 

MMR servers, and located on an arbitrary collection 
of hosts. The first view appears in Figure 2, and 
is relatively simple, where the MMR clients are the 
(conceptual) Modeler and the Translator as discussed 
above. The second view appears in Figure 4, and to 
this we now turn our attention. Above the dashed 
line appear three hosts, connected in an intranet. 
The dashed line is a firewall. A random collection 
of four client applications are shown; typically, these 
are instanmces of MOOSE (Conceptual) Modeler and 
Translator. Also above the dashed line firewall is an 
MMR private server, which is accessible to all clients 
in the intranet but not to any clients outside (below 
the dashed line). Just below the dashed line firewall 
appears an MMR public server. This server is acces- 
sible not only to clients above the dashed line but also 
to clients throughout the web. The heavy double line 
represents the internet and TCP/IP MMR protocol. 
Several distant MMR servers are shown at various 
web sites. Specifically, suppose that Client 1 is an 
instance of (Conceptual) Modeler which is building a 
model some of whose components are stored locally, 
in either the private or public server, with other com- 
ponents located at the MMR at site 1 and at the 
MMR at site 2. Client 1 is able to construct its large 
model from the various small ones transparently with 
respect to the location of the components. The illu- 
sion that the model definition is all stored locally is 
maintained by cooperation among the MMR client- 
side support services attached to Client 1 on Host A, 
the MMR Public Server on Host C, and the (distant) 
MMR Servers at sites 1 and 2. 

Present plans call for the MMR protocol to be 
identical to the format already in use for the stand- 
alone version of MOOSE; this format appears in the 
flat text files which describe MOOSE conceptual mo- 
dels, and is HTML-like in the sense that it can be 
inspected and modified with almost any text editor, 
to facilitate diagnostic work as well as customization. 
Since the web is a network of multimedia documents, 
we propose a way of integrating the MMR with the 
web. This is done by a simple mechanism: permit- 
ting an object attribute to be of type URL, a class 
whose instances are URL's. Thus, documentation is 
an attribute of an object and within a web document, 
a conceptual model may be inserted as a basic URL 
type, e.g., model. Accordingly, to retrieve a concep- 
tual model of a six-cylinder automobile engine from 
Detroit, the following hypothetical URL would be ac- 
cessed: model://models.gm.com/eng6cyl.mod. This 
permits a tightly-coupled, interwoven effect between 
the web and a MOOSE conceptual model. MMR 
Servers will support this proposed framework when 
it is available; in the interim, they can communicate 
with TCP/IP, until there is demand to implement the 



proposed mechanism. REFERENCES 

5     CONCLUSIONS AND FUTURE DIREC- 
TIONS 

To date MOOSE has fulfilled each promise we had 
for its capabilities. We are gratified that OOPM has 
provided both a sound theoretical footing as well as 
a guide for our intuition as we develop MOOSE. Sev- 
eral research projects (e.g., a study of the Everglades 
ecosystem) are planning to work with MOOSE, and 
this fall students will use MOOSE in homework and 
projects for the graduate course in Simulation Prin- 
ciples at University of Florida, providing what is cer- 
tain to be valuable feedback. 

Distributed web-based operation is leading in new 
directions. Distributed operation questions include 
(1) how to categorize and locate components for re- 
use, (2) whether dynamic binding is the most ap- 
propriate binding time for component definitions, (3) 
how scalable the MMR will- turn out to be, (4) what 
relation if any will exist between MOOSE, CORBA, 
and DCOM, and (5) how successful will be our ap- 
proach to embedding legacy code as MOOSE models. 
Other questions include (6) whether Java will dis- 
place TclTk as primary language for MOOSE HCFs, 
(7) how to apply distinctions with greater sophisti- 
cation among the relations containment, usage, com- 
position, and association,' (8) how best to extend the 
existing MOOSE repertoire for dealing with collec- 
tions of objects to make it better serve model authors' 
needs, and (9) how to make Scenario's visualizer as 
generic as the rest of the model definition. 
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ABSTRACT 

MOOSE (Multimodel Object Oriented Simulation Environment) is an application framework for modeling and 
simulation, under development at University of Florida, based on Object Oriented Physical Modeling (OOPM). 
OOPM extends object-oriented program design with visualization and a definition of system modeling that reinforces 
the relation of model to program. OOPM is a natural mechanism for modeling large-scale systems, and facilitates 
effective integration of disparate pieces of code into one simulation. Components of MOOSE are Human Computer 
Interface (HCI), Library, and Back End. HCI interacts with model author via graphical user interface (GUI) which 
captures model design, controls model execution, and provides output visualization. Library has a model repository 
and object store facilitating collaborative and distributed model definitions, and managing object persistence. The 
Back End automatically converts a model definition to a complete simulation program in some Translator Target 
Language (TTL), presently C++, then compiles and links the program it wrote, adding runtime support, and 
creating an executable program which runs under control of the HCI to provide model execution. Dynamic model 
types include Finite State Machine, Functional Block Model, Equational Constraint model, and Rule-based Model; 
alternatively, model authors may create their own C++ code methods; model types may be freely combined through 
multimodeling, which glues together models of same or different types, produced during model refinement, reflecting 
various abstraction perspectives, to adjust model fidelity during development and during model execution. Underlying 
multimodeling is "Block" as fundamental object. Every model is built from Blocks, expressed in a Modeling Assembly 
Language. 

Keywords: Simulation, Multimodel, Object-Oriented Modeling, Model Abstraction, Object Oriented Physical 
Modeling, Visualization, Application Framework 

1.   INTRODUCTION 

MOOSE is an acronym for "Multimodel Object Oriented Simulation Environment", a modeling and simulation en- 
abling tool under development at University of Florida. MOOSE is an implementation of OOPM (Object Oriented 
Physical Modeling),1 an approach to modeling and simulation which promises not only to tightly couple a model's 
human author into the evolving modeling and simulation process through an intuitive HCI (human computer in- 
terface), but also to help a model author to perform any or all of the following: (1) to think clearly about, to 
better understand, or to elucidate a model; (2) to participate in a collaborative modeling effort; (3) to repeatedly 
and painlessly refine a model as required, in order to achieve adequate fidelity at minimal development cost; (4) to 
painlessly build large models out of existing working smaller models; (5) to start from a conceptual model which is 
intuitively clear to domain experts, and to unambiguously and automatically convert this to a simulation program; 
(6) to create or change a simulation program without being a programmer; (7) to perform simulation model execution 
and to present simulation results in a meaningful way so as to facilitate the other objectives above. 

In some cases model design, without model execution, suffices to achieve the model author's objectives, which may 
be to learn about or better understand a phenomenon or system, or to communicate about such a system with one's 
colleagues. This purpose is per se justification for the development of MOOSE. But usually a model author wishes 
not only to design a model but also to construct a simulation program to perform model execution, for reasons which 
include : (1) to empirically validate the model based on observed behavior; (2) to select or adjust various parameters 
and values and observe their effect; (3) to measure performance; (4) to gauge model fidelity and assess its adequacy. 



In prevalent practice, a model author makes what is known as a conceptual model, often similar to a "blackboard 
picture" with annotations, and uses this model to describe to one or more programmers detailed requirements for 
a simulation program to be written, based on the conceptual model. Programmers then write a program, but there 
is not necessarily a relation between the conceptual model and the program subsequently produced. MOOSE offers to 
improve this situation: MOOSE assists the model author with constructing the conceptual model, and then builds 
a simulation program in an unambiguous way from the conceptual model. MOOSE thus provides a mapping from 
conceptual model to simulation program. Advantages include: (1) built-in model validation2; (2) partial automation 
of the development process, allowing model authors and programmers to focus on the difficult, rather than on the 
tedious; (3) easier accommodation to change, leading to a view of change as acceptable instead of as a threat; (4) 
reducing the response time associated with system development, allowing the model author to effectively drive the 
development process. 

The amount of detail in a model reflects the model author's abstraction perspective.3 Refinement to greater detail is 
used to obtain model fidelity that is adequate in the eyes of the model author, from a given abstraction perspective,4 

and with certain objectives for the model or simulation to meet.5 MOOSE addresses this area with multimodeling, 
an approach which glues together models of the same or different types, produced during the activity of model 
refinement, and reflecting various abstraction perspectives.6 Refinement can be adjustable during model execution 
as well as during model design. The pieces that are put together to form a model, such as described above, are 
dynamic models. Dynamic model types supported include Finite State Machine (FSM), Functional Block Model 
(FBM), Equational Constraint Model (EQN), and Rule-based Model (RBM); alternatively, users may create their 
own C++ "code models"; model types may be freely combined. The dynamic model types implemented so far form 
a popular collection of approaches used in simulation.7 Additional dynamic model types are certainly in order and 
will likely be added to the MOOSE repertoire. 

Reuse of one's own previous work, as well as by one model author of the work of others, is encouraged by availability 
of model repositories. These form a resource of growing value as MOOSE matures. For example, the "boiling 
water" model,7 is an FSM multimodel, part of which is shown in Fig. 6. Later, we implemented a model of Robert 
Fulton's steamship,8 whose FBM appears in Fig. 5. When the Fulton model was built, the boiling water model's 
Pot re-emerged as the Boiler of the steamship. Yet, an application framework is more than just a class library. In 
an application framework, classes from the library are related in such a way that a class is not used in isolation but 
within a design encouraged and supported by the framework. The MOOSE Model Repository (MMR) is aptly named 
because it is not just a class library; as a model repository, it stores not only a collection of classes available for reuse, 
but also the design which relates those classes as to how they play together within the geometry and dynamics of a 
particular model. This enables support for one of Booch's five attributes of a complex system (p. 13): "A complex 
system that works is invariably found to have evolved from a simpler system that worked .... A complex system 
designed from scratch never works and cannot be patched up to make it work.". Using MMR, model authors can 
start from some piece of their overall system that happens to appeal to them intuitively. When several such pieces 
are working, they may be combined into a more-complex (working) system. 

Components of MOOSE fall into three groups: Human Computer Interface (HCI), Library, and Back End. The 
HCI is comprised of two components: Modeler and Scenario. Modeler interacts with the human model author via 
graphical user interface (GUI) to construct the model. In simulation parlance, this is model design. Modeler relies 
on the Library (discussed below) to store model definitions. Scenario is a visualization enabler employing a GUI. 
Scenario activates and initializes simulation model execution (which we call Engine) at the behest of user (who 
may or may not be the original model author). Scenario maintains synchronous interaction with Engine, displaying 
Engine output in a form meaningful to user, optionally allowing user to interact with Engine, including modifying 
simulation parameters and changing the rate of simulation progress. The Back End has two components: Translator 
and Engine. Translator is a bridge between model design and model execution: Translator reads from the Library 
a language-neutral model definition produced by Modeler, and emits a complete computer program for the model, 
in Translator Target Language (TTL). Presently MOOSE TTL is C++; potentially, TTL can be Java or another 
language. This simulation program emitted by Translator is called Engine. Its source language is TTL, presently 
C++. Once compiled and linked with runtime support, the Engine executable program is activated under control 
of Scenario to perform model execution. The Library has two components: MOOSE Model Repository (MMR) and 
MOOSE Object Store (MOS). MOS holds object data and MMR holds object meta-data. MMR keeps track of 
models as they are being built. MMR servers provide a database management system (DBMS) for model definitions. 

10 



MMR clients work with Modeler and Translator to define and use model definitions. Models and model components 
created by other model authors (or the same model author previously) are available for browsing, inclusion, and/or 
reuse. Base classes such as sets for modeling collections and popular geometries for spatial models are available 
to the model author. An MMR client can simultaneously maintain conversations with several MMR servers, each 
on a different machine, which permits model definitions to be distributed. An MMR Server can simultaneously 
maintain conversations with several MMR clients, on the same or different hosts, which permits collaboration on 
model development. MOS does for objects much of what MMR does for models. MOS works with Engine and 
Scenario, in similar fashion to the way MMR works with Modeler and Translator. MOS manages object persistence. 
Although the architecture permits MOS to be capable of distributed operation, just like MMR, this is not our present 
focus in MOOSE; thus, MOS operates in support of model execution on a single host only at this time. 

There are two kinds of distributed operation to consider: one is where model definitions are distributed, with some 
classes defined here, others there; the second is where model execution proceeds as a distributed simulation, executing 
simultaneously on a number of hosts, with one object instantiated here, another there. The MOOSE architecture 
supports both kinds of distributed operation. The present implementation supports distributing definition of multi- 
models, as this is our primary research focus. 

The balance of this chapter is organized as follows : section 2 explains how an Object Oriented approach is used 
by MOOSE to capture the geometry and dynamics of a model; section 3 explains how MOOSE uses multimodels 
to facilitate model refinement to achieve appropriate levels of model fidelity; section 4 describes the components of 
MOOSE in some detail and how they interact; section 5 covers some important MOOSE internal classes, as well as 
our chosen platforms; section 6 is our conclusions and plans. 

2.   AN OBJECT-ORIENTED APPROACH TO INTEGRATING MODEL GEOMETRY 
AND DYNAMICS 

2.1.   An Object Oriented Approach 

MOOSE is the implementation of a simulation environment built using the OOPM design philosophy. Classes and 
objects in the digital world being built correspond to classes and objects in the real world being modeled.   This 
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Figure 1. The three components of MOOSE (HCI, Library, and Back End) are shown outlined with dashed line 
boxes. Parts within each component are shown outlined with solid boxes: within HCI (Human Computer Interface) 
appear Modeler and Scenario; within Back End appear Translator and Engine; within Library appear MMR (MOOSE 
Model Repository) and MOS (MOOSE Object Store). Principal interactions are shown with arrows. The most 
important element is the model author, who appears at left interacting with both parts of the HCI. 
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approach has been found to not only be intuitively appealing to model authors, but also to be both effective and 
efficient at capturing the elements of meaning which must be represented in the model.9 Dynamic models are an 
extension to "00 method"; static models, in the form of Abstract Data Types without dynamic behavior, are an 
extension to "00 attribute". 

As (class and) object identification are performed, the model author is encouraged to explicitly recognize relations 
among classes. Most notable among these relations are specialization (or generalization) and aggregation. 
Specialization is the relationship of derived class (or subclass) to base class, such as "an orange is a kind of fruit"; 
Generalization is just the reverse, such as "Truck and Airplane are kinds of Vehicle". Aggregation comprises not 
one but several sometimes overlapping relations in the system being modeled, including containment, composition, 
usage, and association,10-12 such as "a Car has Wheels", "the Moon is made of GreenCheese", "a Customer uses an 
automated teller machine (ATM)", and "a Teacher is associated with a University", respectively. Sometimes deciding 
which particular relation applies is a gray area; in any event, relations should not be examined in a vacuum but 
rather in the context of the model being built. Containment: "a Car contains an Engine". Litmus test: (1) does 
behavior of Car depend in fundamental way on Engine? Yes. (2) is Engine inside or part of or attached to Car? 
Yes, hence containment. Composition: "a Basket is composed of Straw". Contrast this with "a Basket contains 
Fruit"; hence, not containment, as the Straw forms the boundary not the contents. Constituent in a constructive 
sense. Usage: "a Person uses an ATM". Litmus test: (1) does behavior of Person depend in fundamental way on 
ATM: No. (2) is the ATM inside or permanently attached to the Person: no. Hence usage. Association: "a Car 
has a Manufacturer"11 Litmus test: (1) does behavior of car depend in fundamental way on GM? No. (2) Is General 
Motors inside my Car? No. (3) Does the Car have an ongoing use for GM? No (although one can think about 
recalls, and/or suing GM for defects, but this is not within the ambit of Car behavior in most systems, because it's 
the owner who sues, not the Car which sues; and it's GM which recalls the Car, not vice versa). 

Sometimes these distinctions cannot be drawn with certainty, and sometimes the model can be elucidated completely 
without deciding the issue; but discussing the nature of relations, thinking about them, and a reasonable amount 
of effort spent in attempting to categorize the aggregations within a model is often a useful exercise, because of the 
light it sheds as the discussion and debate unfold. 

An example of drawing such distinctions is "containment by reference" vs "association by referential attribute".11 

Both are pointers so there is no implementation issue; but the difference is with regard to lifetimes: in the first case, 
the object contained by reference should live and die with the containing object; in the second case, the objects have 
independent lifetimes. This distinction may be useful for the model author to recognize. 

Teacher Teacher 

[=71 
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Students Style University Professor Lecturer Adjunct 
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Figure 2. Class relations depicted graphically as they would appear on a MOOSE HCI canvas to a model author. At 
left is aggregation; at right, generalization (viewed upwards) or specialization (viewed downwards). The aggregation 
relation is symbolized by the filled square; the specialization or generalization relation is symbolized by the filled 
circle. The small boxes just above each class in the aggregation specify cardinality, which is explained in the text. 
This aggregation, in words: a Teacher has many Students, has a Teaching style, and has an association with a 
University. The specialization, in words: Professor, Lecturer, and Adjunct are all kinds of Teacher. 
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Specialization and Generalization relation have been thoughtfully investigated.13-14 Aggregation abounds in most 
models we have encountered, and we have found it to be of fundamental importance to the process of modeling. 
Aggregation has also received attention,11-10 although less so than specialization / generalization. Aggregation has 
received, and continues to receive, keen scrutiny as we develop MOOSE under OOPM principles. 

As MOOSE is requiring the model author to communicate relevant object identification and relations, it is building 
a conceptual model, which can be a handy representation for the model author. And this kind of "blackboard 
model" is often useful for one person involved in a project to communicate with his or her co-workers. Yet two other 
important things are going on: (1) as the model takes shape before his or her eyes, the model author often gains 
understanding, as represented in the aphorism "the best way to learn something is to have to explain it to someone 
else"; and, (2) a model description is being constructed which although independent of any programming language, is 
nonetheless unambiguously and automatically convertible to a simulation program in some programming language, 
e.g.; C++, when the model author wishes to do so. Making explicit the classes and objects, and their relationships 
often sheds light on what is being modeled and surfaces questions and ambiguities which must be addressed to 
achieve the modeling or simulation objective. This is part of what is meant by tightly coupling the model author 
into the modeling and simulation development loop. 

2.2.   Attributes, Abstract Data Types, and Containers 

Attributes are defined for each class. In addition to the "primitive" data types (integer, real, and string), MOOSE 
also permits arbitrary abstract data types (ADT) to be attributes. These ADT's are just classes like all the other 
classes in the model, and they play an important role in representing aggregation. We have several ways in MOOSE 
to represent aggregation as we create the constituent elements as attributes of the aggregate class. A decision as to 
the best representation rests on answers to questions such as whether the number of items of a constituent type is 
one, (e.g, a car has one steering wheel), or more than one (e.g. a car has four tires); whether the number of items 
of a constituent type elements is known in advance and fixed (number of cells on a checkerboard), or is inherently 
variable (a population of deer). 

When specifying aggregation, the model author can choose from several cardinality alternatives for each aggregated 
class: many causes a container to be created, which holds contained objects of the aggregated class; a value such as 
64 also causes a container to be created but additionally automatically populates the container with the designated 
number of contained anonymous objects; A causes an association, meaning a referential attribute, which is a reference 
(pointer) to a named object whose lifetime is independent of the lifetime of the object of the aggregating class; V 
indicates containment (value), which generates a value attribute within the aggregating class. When the cardinality 
of an aggregated class is one, an ADT attribute will be created in the aggregating class, but a choice remains between 
value and reference. In the first case an object of the aggregated class is created at the constructor time of the object 
of the aggregating class. This suggests the "lifetime test" as a decision criterion. If the aggregated object will have a 
lifetime which is independent of the lifetime of the aggregating object, then an association, represented by a reference 
(pointer), is in order. It is also possible for model author to choose a referential attribute when the lifetimes coincide, 
but then it will be model author's responsibility to manage object destruction. Because this is usually an unwelcome 
duty, value attributes should be chosen whenever possible. 

A second criterion is the "name test". If the object of the aggregated class needs to be a named object created in 
another part of the model by the model author, then a referential attribute, also represented by a reference (pointer), 
is in order, irrespective of the lifetime issue. Yet we have found that named objects are the exception rather than the 
rule, because: names are often not a necessity; named objects force more work onto the model author; and, unnamed 
objects are still accessible as or within attributes of their aggregating class. We have found that MOOSE's ability to 
create these anonymous objects is quite useful. An example is a collection of 1000 individual models of free-roaming 
entities, such as polymers on a substrate or deer in a forest. In both cases the model author considers the objects a 
fungible collection, and has no need to provide each of the 1000 objects with unique names. MOOSE supports this 
with containers. 

When there are multiple, and especially when there are an uncertain number of items of a kind, an abstract data type 
which is a Container class becomes the type of the attribute. This container class attribute holds elements of the 
contained type. For example, Tires, a tire container, might hold four tires, and this tire container is an attribute of 
the class Car. Alternatively, DeerPop, a deer container, might hold any number of deer, and this deer container is an 
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attribute of the class Everglades. Container classes have been found to be an effective way to represent an important 
aspect of aggregation. Provision is made in MOOSE for optional automatic population of containers at constructor 
time; and alternatively, to allow the model author an optional code fragment to append to the constructor to instead 
allow custom initialization of containers if required. Container classes can be specified directly by the model author, 
such as the DeerPop example above; or, are created automatically by MOOSE based on cardinality, such as the 
Tires example above, where the user actually only created the Tire class but mentioned that the cardinality is four. 
Containers have inherent behavior in MOOSE: they know how to send information to their contained objects, they 
know how to execute one or more methods of their contained objects; they know how to select a subset of their 
contained objects based on some criterion. This behavior is along lines discussed by Zeigler.12 

Another aspect of aggregation is how to relate an attribute of an aggregating class with the corresponding attribute in 
its aggregated classes, when such correspondence exists. In contrast to a delegation function, which is a method of an 
aggregating class that simply passes through a method to an aggregated class, here we similarly have a method of an 
aggregating class that has the same name as a method of an aggregated class; however, here the problem is to invoke 
the corresponding method of every aggregated class and in some way transform the results into an overall result for 
the aggregating class. This problem necessarily includes the problem of a container obtaining such information from 
all its contained objects, which we have solved. The container problem is easier because all contained objects are 
homogeneous and can be dealt with in the same way. This suggests the solution, which is to derive all aggregated 
classes from a base class which has the desired functionality, and then package all the objects of the various aggregated 
classes into a single container whose contained class is the common base class, which has the requisite functionality. 
An example is biomass in an ecosystem simulation. A deer has a biomass which is its weight. Our deer population 
in the example above thus has a total biomass which is the sum of the weights of every individual deer. Moving 
to higher levels of aggregation, the Everglades has a biomass which is the sum of the biomasses of all populations 
in the model. Here the relation is summation, and the base class common to deer and fish and sawgrass has this 
functionality. While summation is a popular example, it is by no means unique; a model author is free to specify 
whatever functionality is appropriate to the model. 

2.3.   Capturing the Geometry of a Model 

MOOSE is based on OOPM, and OOPM in turn has a number of tenets, two of its most important relate to 
geometry and dynamics. Geometry relates to space, and Dynamics has to do with temporal evolutions. We first 
discuss MOOSE model geometry. Geometry is represented by static models, in the form of Abstract Data Types 
without dynamic behavior, as an extension to "00 attribute". When a simulation involves a world where entities 
interact and evolve over a field, with the field often influenced and changed by the presence and activities of the 
entities, one usually thinks of model geometry in the conventional sense of defining properties of the space over which 
the field is defined and through which the entities move. This is certainly one form of model geometry, and one which 
MOOSE supports. An example of this kind of simulation is John H. Conway's board game "Life" ,15>16 which has 
been implemented as a MOOSE model. A complete explanation of the game is not feasible here, but the interested 
reader can learn details from the references ,17 Summarizing the model, the Game is an aggregation of, or "has a", 
Board and Rules. Board in turn has a container Cells and a BoardGeometry. Cells container in turn contains many 
individual Cell objects. BoardGeometry maps the real location or identity of Cell objects in the Cells container 
onto 2-dimensional space. Rules tells the Game how to take each cell on the board from one tick of the simulation 
clock to the next (e.g., birth, death). This illustrates that MOOSE can model any space by mapping elements of 
a container class of individual region objects onto a space of any specifiable complexity. In Fig. 3(a), a general 
framework is shown which applies to models we call "cellular". Such models are characterized as "field" models, 
and typically involve some kind of physical space with a certain geometry, a collection of entities that roam over the 
space, possibly interacting with one another and the space itself, and all of this evolving over time in accordance with 
some laws, which include initial and physical boundary conditions. An important subset of the "cellular" framework 
applies when the dimensionality is two. A framework for this subset which we term "landscape" is shown in Fig. 
3(b). The Life model was constructed from the landscape framework. MOOSE considers geometry not only in the 
narrow conventional interpretation above; but also, in a broader sense, the space under consideration can be a space 
other than a physical space; rather, it can be a space over which classes and/or objects relate. MOOSE is capable 
of modeling this sort of geometry as well, through class definitions and relations among classes. 
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Figure 3. At the left is a MOOSE model that serves as a very general framework for a large variety of "field" models, 
which are characterized by a multi-dimensional space over which entities range, interacting with one another, and 
affecting the properties of the space, in accordance with initial and boundary conditions called Laws. The space 
is subdivided into cells, and has a geometry. At the right is a specialization of the cellular model, in which the 
space is two-dimensional and the geometry is that of a Moore Neighborhood, in which each cell has eight immediate 
neighbors. This model is encountered frequently, so it too has been given a name: "Landscape". A Landscape is a 
kind of Space. A Landscape has a Moore geometry, which is a kind of Geometry. 

The focus on MOOSE so far is in support dynamic multimodels, but we envision equal support for static multimodels 
in the future. Static multimodels will define geometry and semantic networks appropriate for an object. For example, 
the hierarchy tree18 is an example of a static model. To fully support static models, we will need to facilitate 
aggregation and inheritance in objects, as well as in classes. 

2.4.   Capturing Dynamic Behavior of a Model 

Classes would be uninteresting indeed without methods. In MOOSE, these detailed aspects of every class may be 
readily added, changed, and removed, as part of model development, at any time. Dynamic behavior of the system 
is represented by dynamic models. Here MOOSE makes good its promise to the model author to be able to create or 
change a simulation program without being a programmer. MOOSE presently incorporates several kinds of dynamic 
model: FBM, FSM, EQN, and RBM, with others contemplated, such as Petri nets, and System Dynamics models. 
From this ensemble of popular and capable dynamic model types, the model author picks one or more dynamic 
model types to define methods of the classes of the model. Construction of each specific dynamic model typically 
involves drawing the kinds of "pictures" that people tend to make on the back of an envelope or a blackboard when 
informally describing a model to someone else. The MOOSE HCI facilitates these constructions: allowing the model 
author to specify components, connect components, provide inputs, outputs, conditions, and so forth. 

2.4.1.   Functional Block Model (FBM) 

A Functional Block Model (FBM) is constructed when the model author so designates a method, e.g., Mj, of some 
class, e.g., Ci. The FBM editor enables the model author to construct the FBM for Ci::Mj(). Basic to an FBM is 
its blocks. The following are eligible to serve as blocks of the Ci::Mj FBM: (1) methods of Ci itself; (2) methods of 
any value attribute of Ci which is an abstract data type (ADT); (3) methods of any referential attribute of Ci which 
is an ADT; and (4) methods of other associated classes. The first two groups are bound at class declaration time. 
The last two groups require (or at least permit) dynamic binding. 
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The model author identifies each functional block of the FBM from the pool of eligible blocks. The blocks appear on 
the canvas as rectangles, like chips on a circuit board. Inputs and outputs of each block look like the pins on a chip. 
The next job of the model author is to connect the various pins with "traces", forming the topology of the FBM. 
Block outputs are connected to block inputs. FBM inputs are connected to block inputs. Block outputs are selected 
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Figure 4. MOOSE Dynamic Models. On left, a Functional Block Model (FBM) On right, a Finite State Machine 
(FSM). 
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Figure 5.  MOOSE HCI Modeler GUI Editor for FBM, showing part of Fulton steamship model, with functional 
blocks for Boiler, Turbine, Condenser, and Pump. 
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as outputs of the FBM. Cycles are permitted, in which case the value at one time step propagates to the next time 
step. 

Several interesting collections are available to serve as blocks. One such collection is the "control" collection, consist- 
ing of Add, Subtract, Multiply, Divide, Integrate, Constant, PseudoRandom, and Accumulate. Another collection is 
the "queuing" collection, consisting of Source, Sink, Fork, Join, and Facility. Yet another collection is the "flowchart" 
collection, consisting of Begin, End, Decision, Process, and Auxiliary. The first collection is useful for building FBM's 
for control applications. The second collection is useful for simulating traditional queuing models. The third collection 
is useful for constructing models from flowcharts. FBM's can be constructed without using any of these collections, 
but these collections are available as ready-to-use components for those who are familiar with this modeling metaphor 
and wish to stay with it within the context of MOOSE. 

2.4.2.   Finite State Machine (FSM) 

A Finite State Machine (FSM) is constructed when the model author so designates a method of some class. The 
FSM editor enables the model author to construct the FSM. An FSM consists of states. Eligible to appear as a state 
of an FSM are the same groups as are eligible to appear as blocks of an FBM, discussed above. After all states have 
been created and identified by the model author, they appear on the canvas as circles. 

When states are in place, the model author constructs transitions between them. These transitions look like arrows. 
If the arrow points from state 1 to state 2 this corresponds to a transition of the FSM from state 1 to state 2. On 
each FSM transition, the model author places a predicate (logical expression). If the FSM is in a particular state and 
a predicate on one of its outbound transitions is true, then the FSM transitions to the state to which that transition 
points. A well-constructed FSM should have no more than one outgoing transition true at any time. If several such 
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Figure 6. MOOSE HCI Modeler GUI Editor for FSM, showing part of boiling water model, with states for Heating, 
Cooling, Boiling, and Exception; predicates defining FSM state transitions appear as text near the tiny circles on 
arcs. Boiling water model is one component of Fulton steamship model: this FSM is actually inside the Boiler 
functional block of the FBM shown in the previous figure. 
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transitions are true in a MOOSE FSM, an arbitrary transition from among the transitions with true predicates is 
selected. 

2.4.3.   Rule Based Model (RBM) 

A Rule Based Model (RBM) is constructed when the model author so designates a method of some class. The RBM 
editor enables the model author to construct the RBM. An RBM has a number of rules. Each rule is in the form 
of a a conditional expression: if premise then consequence. The RBM editor main window creates any number of 
rule templates in this form, and sets up each premise and consequence to allow the model author to choose any 
premise or any consequence to elaborate a new rule, or to change an existing rule. When the model author chooses 
a premise, he or she enters a premise-editing window, with various widgets that facilitate picking eligible items from 
lists, specifying relational and logical operators. A premise may be a simple logical expression or something more 
complicated; if the latter, then the premise becomes a block. The model author also defines each consequence, using 
a consequence-editing window. Each consequence is either a simple statement or something more complex; if the 
latter (as is usually the case), the consequence is a block. The ability to connect to blocks in this way fits RBM's 
into multimodeling hierarchies (to be discussed below). 
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Figure 7. MOOSE HCI Modeler GUI Editor for RBM (Rule Based Model), showing the RBM editor main window. 
In this window, the model author has decided to construct three rules, which the editor has constructed as shown. 
The first of these rules has been turned from a template to an actual rule by the model author. The other two 
rule templates remain available. By clicking on a premise, the model author can edit the premise part of a rule 
in the premise-editing window (not shown); similarly, by clicking on a consequence, the model author can edit the 
consequence part of a rule in the consequence-editing window (also not shown). A premise can be a block. A 
consequence is always a block. Thus RBM's fit into multimodels just like other dynamic model types. 

18 



2.4.4. Equation Constraint Model (EQN) 

An Equation Constraint Model (EQN) is constructed when the model author so designates a method of some class. 
The EQN editor enables the model author to construct the EQN model. A system of any number of nth order 
differential equations may be entered, using an intuitive syntax. Differential equations are represented using symbols 
such as x, x' for the first derivative of x, x" for the second derivative of x, and in general x followed by n single quote 
marks to denote the nth derivative of x. Several variables may be used. The output of the system may be any order 
derivative of any variable. If a variable used in the system of equations also happens to be an attribute of the class 
to which the EQN model belongs, then at the beginning of the computations of the EQN model at each time step, 
the EQN model is loaded with the value of that variable; and, when the computations are completed for that time 
step, the value is sent to that variable. 

In addition to variables and their derivatives, a set of equations may contain (additive and multiplicative) parameters 
and input signals. Parameters may be attributes of the class to which the model belongs; or, they may be input 
parameters to the EQN method; or, they may be blocks, with eligibility the same as was set forth in detail for the 
FBM above. This will be discussed more fully when multimodeling is considered in a later section. 

2.4.5. Code Methods 

Although promising models without programming, MOOSE also tries to be tolerant and flexible. Thus, if none of 
the dynamic model types suits, the model author is free to write what are termed "code models" or "code methods". 
A code method is a function body written in the TTL used for the MOOSE system. Presently this language is 
C++. MOOSE design ideology suggests that code methods be the exception rather than the rule. Typical use of a 
code method is to provide that one small piece of some models that cannot be described using the available dynamic 
model types, and to rely on dynamic models for the rest, in a way that is analogous to construction of an Operating 
System kernel in a high level language, with just a few assembly-language routines where needed. 

3.   FACILITATING MODEL REFINEMENT 

Constructing a model is almost always an iterative process, with model structure taking on a tree-like appearance. 
The broadest description of the model is like the root of a tree. One then typically decomposes this broad but 
nebulous description into subordinate parts, each part being a refinement of the model in the broad description 
statement. The result typically is a tree with some leaves near the root, and others farther "down". Thus the level 
in the tree is related to the level of abstraction which one associates with thinking about and describing the model. 

To support the kind of heterogeneous model hierarchies shown abstractly in Fig. 8, we must ensure that our models 
are closed under coupling. In short, this suggests that the method of coupling one model component to another 
must be clearly defined. Two kinds of coupling exist: intralevel and interlevel. Intralevel coupling reflects model 
components coupled to one another in the same model. For example, one needs to specify rules of how Petri nets, 
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Figure 8. Multimodeling tree structure for model refinement. Selective refinements achieve required fidelity. 
Extensibility facilitates model development. Polygons above depict the heterogeneous nature of multimodeling: each 
type of polygon represents one type of dynamic model. 
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compartmental models and System Dynamics graphs are formed. With a System Dynamics graph, a rule of model 
building defines that any level has an input rate and an output rate. A more interesting case arises in interlevel 
coupling since we must ensure that we define rules as to how model components from one model can be refined into 
models of different types. Can a finite state machine state be refined into a Petri net, or can a functional block 
model contain finite state machines (FSM) inside blocks? What are the rules to guide this refinement? The rule for 
intralevel coupling is based on functional composition. The primitive of function with its input and output defines the 
coupling procedure in the following way. All models are encapsulated in a single function. Fig. 4 demonstrates this 
functional block encapsulation. This represents the outer shell to support interlevel coupling. Within a model there 
are functional entry points. These are inner shells where new models may be optionally inserted. Each model type 
has its own entry point defined differently. For example, for the model type "FSM", we may define each state to be 
of the form: v(state) = /() where /() is an arbitrary function and v(state) defines the value of the attribute state. 
If state is not refined, then /() returns the value of the state as a character string or integer. If state is refined, then 
/() may be replaced by any function—whether this function is a dynamic model or a code method. The coupling 
approaches are defined in more detail by Fishwick.19 

Resources are limited, and by this we mean both model development resources and simulation runtime resources. 
Thus one typically refines using a breadth-first approach, and this tree-like structure accordingly takes on an uneven 
shape, with some parts of the tree being of greater height, and others being of shorter height, reflecting the underlying 
decision criterion, which is to refine only as much as needed to achieve required levels of model fidelity. But knowing 
what is needed to achieve required levels of model fidelity often requires iterating through several model designs, 
and even measuring performance of the model execution. Multimodeling can be used in the development process, 
to conserve valuable development resources, including time, by limiting the depth of some subtrees; and to provide 
a top-down skeleton within which development may proceed. A rude shallow model can be run, and analysis can 
pinpoint those model subtrees where additional fidelity is needed. This is an adaptive mechanism to focus and guide 
development. The evolving model is thus its own prototype. It needn't be discarded, as in throw-away prototyping, 
nor does it suffer the chaos that often accompanies the "exploratory prototyping" or "exploratory programming" 
approach.2 

Thus MOOSE provides facilities for multimodeling,20'21 by which we mean model refinement into more detailed 
component models, reflecting a number of abstraction perspectives.6 This is a very intuitive concept: most people 
multimodel without thinking about it; yet, they do benefit from encouragement in this direction, and especially from 

refinement candidate 

Figure 9. This figure illustrates a simplistic equation constraint model. The purpose is to indicate multimodeling 
in this dynamic model type. The rectangles representing parameters and inputs (a and u, respectively) are eligible 
to be refinement candidates; in other words, each of them may be block, which is a complete dynamic model in its 
own right. 
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automatic management of the resulting complexity. The multimodel definition is recursive: refinement proceeds 
as far as needed. By facilitating this kind of work and encouraging this kind of thinking, MOOSE contributes to 
management of the model: extending (or reducing) model refinement at any stage of the game. Typically, refinement 
is extended when fidelity is inadequate, and is reduced when the simulation takes too long to execute. Now having 
explained multimodeling in general, we proceed to a specific taxonomy. There are two perspectives from which one 
may look at multimodeling: time of binding and dynamic model type. Each perspective leads to a dichotomy. The 
overall result is a small taxonomy which will now be presented. 

Multimodel dichotomy based on time of Binding: In a temporal sense, regarding the time at which the level 
of refinement is bound or fixed, MOOSE recognizes two kinds of multimodel: fixed structure and variable structure. 
Fixed Structure Multimodels: The evolution of model refinement that takes place over the model development life 
cycle results in a fixed structure multimodel; that is, we change the model's structure from time to time, but whenever 
we build a simulation program representing the model, we freeze model structure as of that time. Of course we can 
change it later and build a new simulation program, but the fixed structure multimodel persists until this is done. 
The second kind of multimodel is the Variable Structure Multimodel, and the MOOSE runtime environment supports 
this kind of multimodel too. A variable structure multimodel changes its refinement on the fly, in response to system 
constraints. A typical constraint is a realtime constraint on when the simulation must complete. Presently, MOOSE 
does not provide the executive logic which decides when to change refinement depth; but, given such logic, MOOSE 
has the capability to reconfigure model refinement on the fly. Others are presently working on providing this logic 
for MOOSE.8 

Multimodel dichotomy based on type of Dynamic Models: When a model is refined, each level is usually 
described by one or more dynamic models. Each dynamic model is of some type, e.g., FSM. If all the dynamic models 
are of the same type, then the multimodel is homogeneous. If the dynamic models are of different types, then the 
multimodel is heterogeneous. In Fig. 8, for example, the multimodel depicted is heterogeneous. 

4.   THE COMPONENTS OF MOOSE 

4.1. Introduction 

MOOSE has six components, which fall into three groups: Human Computer Interface (HCI), Library, and Back 
End. Each group has two components. The HCI is subdivided into Modeler and Scenario. Modeler constructs a 
model; Scenario runs it. The Library is subdivided into MOOSE Model Repository (MMR) and MOOSE Object 
Store (MOS). MOS holds object data and MMR holds object meta-data. MMR keeps track of models as they are 
being built. MOS keeps track of objects as models execute. The Back End is subdivided into Translator and Engine. 
Translator converts a model definition to a program; Engine is that program. 

4.2. Modeler 

The Modeler component of the MOOSE HCI interacts with the human model author via a graphical user interface 
(GUI) to construct a model. In simulation parlance, this is model design. Modeler relies on the MOOSE Model 
Repository (MMR, discussed below) to store model definitions as they are constructed, and also relies on MMR to 
provide reuse components developed elsewhere by others or earlier by the model author. The Modeler GUI is a 
composite: the "main" part defines classes and objects and relations among classes (aggregation and specialization 
or generalization) on one or more canvases. On the canvas, rectangles represent classes. These rectangles are joined 
by relations to form a tree, or, more generally, a graph, reflecting the relations in the system being modeled. Some 
models look cleaner if aggregations and specializations are kept on separate canvases; this is supported but not 
required. Similarly, some models are large enough that several canvases are needed to capture the representation. 

Each class is a box which, when opened, reveals more information, and permits the model author to define the name 
of the class, its attributes, its methods, and its named objects. Within each method, the model author may specify 
input parameters and output parameters, as well as identifying which dynamic model type the method is to be. In 
addition to the "main" GUI presented above, there is a GUI editor for each dynamic model type, i.e.: the FSM 
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editor for finite state machines, the FBM editor for functional block models, the EQN editor for equation constraint 
models, and the RBM editor for rule-based models. 

Besides dynamic models (FSM, FBM, EQN, and RBM), the model author may also select code methods: ordinary 
code methods (CODE), constructor (CSTR), and destructor (DSTR). For these code methods, MOOSE provides a 
text editor which permits the body of each such method to be coded in Translator Target Language (TTL, presently 
C++). Since MOOSE is not really in the text editor business, and its text editor is relatively primitive, the model 
author is free to use his or her favorite text editor to modify these code methods. Because the emphasis in MOOSE 
is on dynamic models, not code methods, reliance on code methods should be minimal in most models. But as 
MOOSE philosophy is to facilitate rather than dictate, the code methods are available as the model author sees fit 
to use them. 

The flow of information between Modeler and the model author is definitely bidirectional. If the model author builds 
a model from scratch, then the information flow is from model author to Modeler. We expect this not to be the 
usual situation. When the model author goes shopping for reusable components to include, or a previous model to 
modify, then the information flows from Modeler to model author. 

Central to Modeler's ability to flow information both ways is MOOSE Model Repository (MMR). MMR has a 
client/server architecture, and Modeler is one of its clients. Modeler communicates via pipes with an MMR proxy 
it starts as a "subprocess". An MMR proxy is thus dedicated to this one instance of Modeler. The MMR proxy 
responds to requests from Modeler, obtaining MMR services from one or more MMR servers, which may be local 
or remote. In this way, Modeler has access to model definitions developed earlier "here" or "elsewhere", for reuse. 
Thus small working models can become elements of the model under constructions; or, a large working model can 
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Figure 10. In this view of the MOOSE HCI, the Modeler GUI is shown for a landscape ecology model in which 
apple snails in Florida's Everglades are modeled as a collection of population models each within a spatial cell. Cells 
tessellate the polygon that represents the march environment of the Everglades. Apple snails are an important food 
of wading birds, and wading birds' behavior are studied using a multimodel, one piece of which will be the apple 
snail model. On the left, the Modeler canvas, showing classes and their relations. Aggregations: a Polygon has a 
geometry, some Cells, and many Entity's; a Marsh has a Hydrology. Specialization: a Marsh is a kind of Polygon. 
On the right, the view inside one of the classes is shown. This is available by double-clicking the class on the canvas. 
Information about attributes, methods, and instantiated objects appear. 
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be modified to a new purpose. 

As Modeler receives information from the model author, it is retained not in Modeler itself, but in MMR. Modeler 
tells MMR whatever it learns of the model, and later queries MMR when it needs information to display the model. 
This allows Modeler to focus on its essential GUI model definition job rather than having to be in the DBMS business. 
A good example is when a named object is created in some class which happens to be derived from (a specialization 
of) one or more base classes. When the model author displays the object with the intention of viewing its methods, 
a recursive traversal is done "up" the generalization hierarchy, because methods of the object include not only the 
methods of its class but also the (public and protected) methods of its bases class(es). Modeler gains this knowledge 
from a query to MMR. All such methods come back to Modeler including their names and parameter lists. Thus the 
display includes the names and parameter lists of the methods of the object, as required, without Modeler having to 
maintain this information explicitly. 

As a model author develops a model, one good mode of action is: develop a little, translate, and save. These steps 
are then repeated as the model grows. It is good practice to translate every so often to check for errors. If the change 
from the previous version is small, it facilitates localizing the source of such errors. If for any reason, the model 
author cannot resolve such errors, an option then exists to discard the latest change, reverting to the previous saved 
version. A second development mode is: develop a little, translate, execute, save. Again, these steps are repeated as 
the model grows. The procedure is similar to that above, except this time the model author has the opportunity not 
only to surface translation time errors, but also to verify the expected runtime behavior. Again, taking sufficiently 
small steps tends to improve productivity by helping to localize the source of errors, and allowing abandonment of 
a relatively small change that did not work as expected. 

4.3. Translator 
The Translator component of the MOOSE Back End uses a model definition from MMR to construct a simulation 
program in Translator Target Language or TTL. Our first TTL was C++, and this C++ Translator is in use 
presently. A second Translator is under development, with Java as its TTL. 

Translator may be invoked either from Modeler or from Scenario. During development, it is most convenient for 
the model author to invoke Translator from Modeler. For production runs, it is easier for the user, who may 
not be the model author, to invoke Translator from Scenario. Translator's output, as previously mentioned, is a 
complete "Engine" program written in TTL (including indentation and comments). The C++ Translator specifically 
emits: engine.h, a header file consisting primarily of class declarations, and engine.cpp, a source file containing C++ 
translation of each dynamic model method and each code method, as well as code to invoke engine runtime support, 
and to synchronize with and accept commands from Scenario. 

Many decisions are made in the course of deciding what code to emit and when. The heuristic we adopted is to 
move as much "intelligence" as possible out of Translator and into MMR. The effect of this is to make it easier to 
construct future Translators, as the same MMR serves them all. The cost in increased size and complexity of MMR 
appears to be justified: MMR has about 2/3 of the code and Translator has about 1/3, so this approach leverages 
Translator development by something like 3:1 through reuse. 

4.4. MOOSE Model Repository (MMR) 

The Moose Model Repository (MMR) component of the MOOSE Library holds object meta-data, such as class 
declarations, including declarations of attributes and methods, and class definitions, including method definitions. 
MMR keeps track of MOOSE models as they are being built. MMR also maintains collections of previous models 
and model parts for reuse. 

MMR has a client/server architecture, and in some ways is patterned after the CORBA (Common Object Request 
Broker Architecture) IR (Interface Repository).22 The MMR servers provide a database management system (DBMS) 
for model definitions. MMR clients work with Modeler and Translator to define and (re)use model definitions. 
Models and model components created by other model authors (or the same model author previously) are available 
for browsing, inclusion, and/or reuse. Base classes such as sets for modeling collections and popular geometries for 
spatial models are available to the model author. An MMR client can simultaneously maintain conversations with 
several MMR servers, each on a different machine, which permits model definitions to be distributed.  An MMR 
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Server can simultaneously maintain conversations with several MMR clients, on the same or different hosts, which 
permits collaboration within an engineering workgroup on model development. 

As was mentioned above, it is necessary at numerous points to analyze information before code can be emitted by 
Translator. Such analysis is performed by MMR as the data is entered. The result is typically stored in a data 
field, often as an enum type value or a boolean. Then in Translator, because the decision has already been made, 
complexity is typically reduced to a switch or if statement to carry out that decision. This makes MMR more than a 
DBMS: the model analysis aspect is an integral part of understanding a model definition sufficiently well to convert it 
automatically into a program. Here is an example, which occurs whenever a functional block model (FBM) appears 
as a method within a model. Each block of the FBM must be examined to ascertain whether it is (1) a method of 
the class containing the FBM, (2) a method of an ADT attribute of the class containing the FBM, or (3) a method 
of some other class. Each case is handled differently when code is emitted: a member method name, a method name 
qualified with the attribute name, or dynamic binding of a block from the model's context. MMR does this analysis 
and provides an enum type plus a boolean containing the decision, which allows Translator to effectuate the decision 
when code is emitted. 

In addition to the normal mode of receiving model definition(s) from model author(s), MMR can also receive model 
definitions in another way: from text files. These files can be created using a text editor. Historically, such files were 
originally created by Modeler before MMR came into existence. These files now serve as a way to initialize or reload 
an MMR server. 

The Modeler is connected to MMR via an interface that consists of pipes to a proxy process, and thence via TCP 
to an MMR Server. This architecture permits a proxy to maintain simultaneous conversations with several MMR 
Servers, some or all of which may be located elsewhere than the local machine. Additionally, the MMR Servers may 
converse with one another, to establish and maintain distributed definitions of models, based either on a hot link or 
a cached local copy of each distant component. 

In the case of Translator and other C++ programs, access to MMR is provided by an API whose code is part of 
the Translator process itself, rather than a proxy. This is done for reasons of efficiency and simplicity, and does not 
compromise the architecture. Both the proxy and the API are "thin" programs, relying on the MMR Server, for two 
reasons: so that more code can be shared between them, and to offload issues of synchronization and concurrency 
to the MMR Server (where it "belongs"). 

MMR is presently a homegrown C++ creation intended as a proof of concept rather than for production use. Upgrade 
to "industrial strength" can be done in future without altering the architecture, as follows: the MMR Server can be 
replaced by a DBMS, either an 00 DBMS, or an RDBMS with 00 wrapper. Proxy and API will then be modified 
to make requests (queries and updates) to the new DBMS rather than to the original MMR Server. This brings to 
MOOSE the synchronization, locking, and security capabilities offered by commercial DBMS software. Importantly, 
Modeler and Translator never see the change and need not be modified. 

4.5.   Engine 

The Engine component of the MOOSE Back End is generated by Translator. Translator emits Engine source code. 
It is then necessary to translate the Engine to create an executable (even with Java, into bytecode). In MOOSE this 
is done automatically under the covers using a "make" utility program; alternatively, Engine can be compiled and 
linked directly by a compiler such as Visual C++ or g++. At link time, a number of runtime support components 
are added from object libraries, the most important of which is ooSim.23 

The ooSim event scheduling toolkit: All dynamic models are translated into C++ code which relies on the 
underlying event-scheduling of the ooSim dispatcher for propagating event chains. ooSim is an event-scheduling 
simulation queuing model toolkit which arose as an object oriented re-implementation and extension of the SimPack 
toolkit7,24; SimPack is, in turn, based on SMPL.25 In addition to event scheduling, ooSim also provides numerous 
other forms of support, such as pseudo-random number generation. But it is the event scheduling that is ooSim's 
primary support role. 

Engine source file contains code to initiate one or more event chains. These event chains propagate independently of 
one another, and the time step of each chain is independent of the time step of every other event chain. The event 
scheduler propagates each event chain until that event chain terminates itself, or until the simulation clock reaches 
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the overall time limit specified for the simulation in the model definition. In general, an event chain propagates 
by rescheduling a specific event routine which the model author identifies. This is accomplished by enabling the 
auto-propagate feature, which is done by default. However, it is also possible for the model author to disable 
auto-propagate, in which case the model itself may generate any number of event chains following any logic. This is 
an advanced feature which is recommended only to those who are familiar with event scheduling in ooSim and wish 
to (or need to) have the additional flexibility which manual event scheduling provides. Manual event scheduling is 
not required to get MOOSE models to run. 
As the Engine runs, it executes one simulation event after another, driven by its underlying ooSim Future Event List 
(FEL). As an event executes, it may generate output on standard output (cout). All such output is presented to 
Scenario for possible use. See the Scenario subsection below for more detail. After executing each simulation event, 
Engine checks with Scenario for instructions and new parameter values. The relation between Engine and Scenario 
is thus inherently interactive and bidirectional. One such instruction permits Scenario to inject events into the FEL 
of an Engine as it is running. This is one feature necessary to support distributed execution of simulation models. 

4.6.   Scenario 
The Scenario component of the MOOSE HCI is a visualization enabler employing a GUI. Scenario activates and 
initializes simulation model execution (which we call Engine) at the behest of user (who may or may not be the 
original model author). Scenario maintains synchronous bidirectional interaction with Engine. In the visualization 
role, Scenario displays Engine output in a form meaningful to user. In the controlling role, Scenario allows the user 
to interact with Engine, modifying simulation parameters and changing the rate of simulation progress. 

Once the Engine executable has been built, it can be run as many times as desired, under auspices of Scenario. 
Scenario establishes a bidirectional pipe connecting it to Engine. The effect is to activate Engine, and to synchronize 
Engine's execution with that of Scenario, so that whatever Scenario writes to the pipe appears on the standard input 
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Figure 11. MOOSE Scenario GUI for Conway's game Life. 
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(ein) of Engine, and whatever Engine writes to standard output (cout) can be read from the pipe by Scenario. This 
interactive connection controls the real progress of Engine: Engine can be allowed to free-run, or can be made to 
single step through one event at a time (the default), or to run at any pace in between. As a separate feature, 
simulation clock time scales can be stretched or compressed. Both can be combined to generate animations with 
which the model author can interact. Things which ordinarily happen blindingly fast can be slowed down. The rate 
of progress can be adjusted to focus on parts of the simulation execution that are of particular interest. 

The bane of simulation is output in the form of reams of computer printout. Scenario improves the situation with 
a GUI with which the user (who may not be model author) interacts. Scenario can initialize parameters and pass 
them to Engine. Most important, Scenario filters Engine's output. Scenario takes Engine's dull boring simulation 
output and turns it into appealing, meaningful, usually graphical, output. Engine is thus free to do what it does best: 
model execution, producing output. Scenario then does what it does best: facilitating visualization of the output as 
"answers". 

Scenario detail is unique to each model. MOOSE has a toolkit of visualization instrumentation for reuse. This kit 
includes dials and gauges, like those seen in an automobile or those which measure progress when installing software, 
as well as simple xy plot graphs and terrain maps. This toolkit is extensible and as new models are developed, the 
toolkit grows and becomes more useful. Nonetheless, some simulation output isn't necessarily amenable to graphical 
realtime treatment, and there is a very necessary role for traditional methods of analysis.26-28 MOOSE can support 
this in two ways: Engine can send output for this purpose to a file separate from that examined by Scenario; 
alternatively, Scenario can direct some of Engine's to such a file. Either way, further analysis of such output can 
then be handled by additional software provided by model author, e.g., MATLAB. Such software can be invoked 
from Scenario, or it may be completely external to MOOSE. 

4.7.   MOOSE Object Store (MOS) 

The MOOSE Object Store (MOS) component of the MOOSE Library holds object data. MOS does for objects much 
of what MMR does for models. MOS works with Engine and Scenario, in similar fashion to the way MMR works with 
Modeler and Translator. MOS manages object persistence and distributed objects. An object enters MOS either 
to hibernate (persistence), or to move to a different host (distributed). An object in a MOOSE component such as 
Engine decides to go into MOS. MOS accommodates this. The object can re-emerge at any MOOSE location, either 
on the same host or a different host, but not to two (or more) locations at the same time. What is supported here is 
moving not copying, corresponding to the real-world constraint that there cannot be more than one copy of a given 
object in existence at any "moment". 

Objects are "flattened" as they go into MOS, and "inflate" again when they are come out. Primitive types, such as 
int, real, and string, are stored as themselves. All other types are abstract data types (ADT's) formed from primitive 
types and/or other ADT's, and are recursively (eventually) flattened into primitive types. For example, an image in 
.gif format belongs to a class (ADT) with two attributes: an array of byte and an integer length. 

An object can persist by sending itself to the MOS. The object can come back from the "hibernating" to the "active" 
state with a special form of its constructor that works with MOS. This technique is extensible to support distributed 
operation by having the two operations occur on different hosts. An object can move by placing itself into MOS 
with a request to be moved to a specific host; or, an object can place itself into MOS and wait for a request which 
will cause it to move to some location which need not be known when the object was stored. Each MOOSE host has 
an MOS, and several MOS's collaborate to find and retrieve objects, so that an object can move from any MOOSE 
host to any other MOOSE host where MOS is active. 

Although the architecture permits MOS to be capable of distributed operation, this is not our present focus in 
MOOSE. We have decided to focus on distributed model definition rather than distributed model execution. Thus, 
MOS operates in support of model execution on a single host only at this time, so that only persistence (and not 
distributed objects) is supported. Work on distributed objects to function as described above is currently underway. 

5.   IMPLEMENTATION DETAIL: SOME IMPORTANT CLASSES; PLATFORMS 

Blocks: This section describes some key classes in MOOSE back-end software, comprised of Translator and Engine. 
First we discuss the Block class: MOOSE models are multimodels built mostly of dynamic models, and every dynamic 
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model has a structure (subordinate elements) and a topology (how those subordinate parts are connected). FSM's, 
for example, have states connected by arcs labeled with predicates that control state transitions; and, FBM's, for 
example, have function blocks connected by traces which carry output of one block to input of another. In MOOSE, 
every subordinate element of every dynamic model {e.g., state of an FSM, functional block of an FBM, is an object 
of a derived class of the base class Block, so called for historical reasons (our first dynamic model type was FBM). 
This homogeneity facilitates model refinement and so is an underlying support for multimodels of all kinds, most 
especially heterogeneous multimodels. 

Clusters: Associated with each Block object is a structure known as Clusters, which hold pointers to objects 
known to belong to classes that have certain relations to the object. Each dynamic model method belongs to a class, 
but the identity and true nature of each block within that dynamic model can be bound as late as every time the 
method is dispatched. Clusters are searched as needed to identify the block objects to associate with each element of 
a dynamic model, just before each execution of the dynamic model. This dynamic block binding facilitates dynamic 
multimodeling. It is also anticipated to support distributed simulation when MOOSE moves onto the web. 

Context: MOOSE engine is event-scheduled using ooSim. This is essentially transparent to the model author, 
who only specifies the time step for each model within each event chain (or one overall time step if all time steps are 
the same). Event chains can terminate themselves, or they can end when the simulation clock reaches a specified 
time. The consequence of event scheduling is that all events, such as one execution of the code of a dynamic model 
are called from the ooSim event Dispatcher. There cannot be any loops in the dynamic models: the equivalent of 
loop behavior is attained by propagating event chains. Each dynamic model is a method of some class. ooSim does 
not use global symbols, so to have the equivalent of static local variables private to each object, a Context structure 
holds this information. Contexts are generated automatically by Translator for dynamic models. This facilitates 
event-scheduling. 

Glist: MOOSE needed a base class for lists, because MOOSE has lots of lists to manage. The Glist class is this 
base class. A Glist object is a dynamically allocated array of pointers. When insertion is performed, the array senses 
when it is full, and automatically expands, in a way transparent to the caller. Glist is not a linked list, it is an 
array, so it has speed and safety advantages relative to linked lists. Derived classes of Glist are made type-safe 29 by 
appropriate casts in derived class declarations (not in calling code!). There are specialized methods that were needed 
for one derived class or another, and were put into the Glist base class, and so became available for all derived classes, 
present and future, to use. First Glist was handy in Translator, then it was reused in Engine runtime support; most 
recently, it has become the foundation of the container classes which facilitate representing aggregation. 

Dynamic: The present MOOSE implementation includes several of dynamic models: FSM, FBM, EQN, and RBM. 
We see needs for other kinds of dynamic models, such as Petri nets, System Dynamics models, Fuzzy models, and 
perhaps others. There is a requirement that MOOSE be painlessly extensible to new dynamic model types. The 
Dynamic class is an abstract base class13 in Translator, from which all current dynamic model classes internal to 
Translator are derived, and which will facilitate creation of new dynamic model types in future. 

Portability: Platforms and Languages: We chose two target platforms for MOOSE: the first is Sun Solaris 
dialect of System V Unix; the second is Microsoft Windows NT. The code also seems to run under Windows95 but 
we do not develop under Windows95. The Unix platform was chosen for convenience, as it is ubiquitous in our 
Departmental environment, as it is across academia. The Windows NT platform was chosen because it runs not 
only on the IBM-compatible PC with Intel x86 CPU, but also on RISC processors like Digital's Alpha AXP, the 
PowerPC, and MIPS RISC.30 For MOOSE programming languages, we chose TclTk for our components with GUI's 
(Modeler and Scenario); and, C++ for our back end components (Translator, TTL, and Engine runtime support). 
MOOSE back end code has been compiled under MS Visual C++, Borland C++, Borland Turbo C++, and g++. 
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6.   CONCLUSIONS AND PLANS 

TclTk is our programming language for Modeler and Scenario GUI's. As TclTk neither enforces nor facilitates 
object-oriented methodology, we are looking at ways to retain the benefits of TclTk while improving the reusability 
and extensibility of the code. The MOOSE Model Repository (MMR) has been a substantial step in the right 
direction, offloading from Modeler the job of keeping track of all the details of a model. We will also explore object- 
oriented alternatives to TclTk. Scenario has a difficult job: it must facilitate visualization even though every model 
is different in surface appearance. Scenario is also presently written in TclTk so the remarks above regarding lack 
of object-oriented support apply as well. Nonetheless, we are working on building a toolkit of popular and reusable 
dials, gauges, graphs, and clip art, and are looking at XF and SpecTcl GUI builders. Our HCI needs constant 
review and improvement, especially as new immersive technologies beckon. It is a fundamental tenet of MOOSE and 
OOPM, that the HCI must fit the model author like a glove. Our objective is to make it fun to use the MOOSE 
HCI. Accordingly we are prepared for the HCI to evolve. 

The present MOOSE implementation includes several kinds of dynamic models: FSM, FBM, EQN, and RBM. We 
see needs for other kinds of dynamic models, such as Petri nets, Rule based models, Fuzzy models, and perhaps 
others. Aggregation and the implications of aggregation pose interesting questions, especially as we distinguish 
among containment, usage, composition, and association. Although we have significant results, more work lies 
ahead. We plan to take MOOSE onto the worldwide web, to distribute model execution. For web-based operation, 
a plan is underway to embed distributed model execution within a MOOSE method using CGI (Common Gateway 
Interface). We also plan to evaluate a Java alternative in this context. 
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Abstract 

Multimodeling Object-Oriented Simulation Environment (MOOSE) is an implemen- 
tation of Object Oriented Physical Modeling (OOPM) methodology. MOOSE compo- 
nents include a Model Repository (MMR), a Conceptual Modeler GUI, several Dynamic 
Multimodel Editors, a Translator which takes model definitions to simulation programs, 
support for simulation output visualization using VRML (Virtual Reality Markup Lan- 
guage) in a web-based setting. A Distributed Modeling Markup Language (DMML) 
has been developed for communicating among MOOSE components, and between the 
Worldwide Web and MOOSE. DMML has similarities to the Common Object Request 
Broker Architecture (CORBA) Interface Definition Language (IDL), and to the Depart- 
ment of Defense DMSO (Defense Modeling and Simulation Office) HLA (High Level 
Architecture) OMT DIF (Object Model Template Data Interchange Format). MMR 
uses DMML to support distributed modeling, allowing geographically dispersed model 
authors to form virtual workgroups, and facilitating model reuse. MOOSE compo- 
nents are accessible in several compatible configurations which support different needs, 
including the primary configuation which uses a web browser plug-in. 
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1    Introduction 

MOOSE (Multimodeling Object-Oriented Simulation Environment) is a software environ- 
ment combining mostly-visual metaphors with refinement of behavioral abstractions using 
a wide range of dynamic multimodels to facilitate object-oriented analysis and design in 
support of developing simulations. MOOSE can be configured as a general-purpose tool 
to facilitate modeling, or, with the addition of specialized class libraries, can serve as an 
application framework in a vertical niche, such as for modeling ecosystems. MOOSE is 
based on the OOPM (Object-Oriented Physical Modeling) approach developed by the sec- 
ond author, and thus bears similarities to familiar OOA&D (Object-Oriented Analysis and 
Design) techniques such as UML (Unified Modeling Language).1 The MOOSE Conceptual 
Model represents classes, relations among classes such as composition and specialization, 
objects, and relations among objects. MOOSE dynamic multimodels represent a powerful 
and formal approach to behavioral refinement which provide mostly-graphical metaphors 
for several alternative representations to better suit the varying taste and background of 
diverse groups of model authors, including such representaions as finite state machines, 
rule-based models, and others. MOOSE uses the power of VRML (Virtual Reality Markup 
Language) to express geometry; thus, in MOOSE, output visualization as well as static 
exploration of a model's geometry are leveraged with VRML. Additional leverage is pro- 
vided by the Worldwide Web: MOOSE is being packaged as web-based software to facilitate 
broad painless distribution not only of MOOSE software itself, but also of the models devel- 
oped using MOOSE, and to minimize platform-dependence. MOOSE supports distributed 
model definitions, model reuse, and collaborative model development. At simulation run- 
time, MOOSE supports a federation of simulations as contemplated by the Department of 
Defense DMSO (Defense Modeling and Simulation Office) HLA (High Level Architecture). 

2    A MOOSE Overview 

MOOSE provides a mostly graphical way for model authors to express, define, communicate, 
and think about models. Once entered, model definition information becomes persistent: 
it is retained by the system and is available for later use. One such use enables me to 
resume work on a model next week where I left off today; a more interesting use is to send 
a model definition to the MOOSE Translator, whose output is a machine-generated simula- 
tion program in the C++ programming language, unambiguously derived from the model 
definition. When a machine-generated simulation source program is translated to binary 
and augmented with runtime library support, a simulation executable we call a MOOSE 
Engine is created, which can run once or many times as the simulation corresponding to 

'Caveat: comparing MOOSE with UML is not quite appropriate; as MOOSE is an implementation of 
OOPM, it would be more appropriate to compare MOOSE with a tool that implements UML, which is 
outside the scope of this paper 
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the model. The Engine is available not only to the model author, but to other users as well; 
it can be coupled to an output visualizer using TclTk or VRML. 

In the original development of MOOSE, model definition persistence was accomplished via 
textual format, in a set of flat ASCII files comprising a model definition. This approach 
had (and still has) a number of benefits, including: such model definitions are compact, 
relatively easy to read, understand, and even modify if need be; model definition files get 
backed up as part of local system backups; models can be put on diskette, into a .zip archive, 
or ftp'd; it also is a software engineering tool to eliminate development bottlenecks. This 
incarnation of MOOSE is standalone software, with no provision for sharing, thus limiting 
reuse; moreover, this MOOSE can be used on a machine only after MOOSE software is 
obtained and installed on that machine. 

Subsequent progress on MOOSE has continued on several fronts, among which two are 
the focus of this paper: (1) a new approach to model definition persistence we call "model 
repository"; and (2) making the modeling environment web-based (as in World-Wide Web). 

The MOOSE Model Repository (MMR) communicates using the connection-based TCP 
(Transmission Control Protocol) over IP (Internet Protocol) with producers and consumers 
of model definitions, as an alternative to the local-file-based model definitions mentioned 
above. Model authors still interact with the mostly graphical interface, but persistent 
model definitions reside within MMR; similarly, MOOSE Translator still converts model 
definitions to C++ simulation programs, but model definitions are from MMR rather than 
local files. These changes are essentially transparent to model authors. Benefits include: (1) 
a model defined on machine A can be translated on machine B; (2) a model can be defined 
and/or translated on a machine with no (or limited) local persistent store; (3) models reside 
where they can best be catalogued, indexed, browsed, backed up, and otherwise maintained, 
without distracting model authors from their primary focus. MMR also permits models to 
be shared in a way that was not available before: for example, a model defined on machine 
A can be referenced on machines B and C, so Ann's model is available to Ben and Cal. 
This not only (4) increases reuse potential; it also (5) provides an environment to support 
collaborative development, a distinct benefit. Disadvantages include reliance on network 
connections and consumption of network bandwidth. MMR's may from time to time start 
and stop, so the MOOSE universe may have any number of MMR's. MMR's know about 
one another, can forward requests to their peers, and can share model information. But 
MMR does not, in and of itself, make MOOSE "web-based". 

Fortunately, the worldwide web does offer a way for MOOSE to be a web-based modeling 
environment. Our "litmus test" for whether software is "web-based" is: (1) that it require 
no installation of separate software, and (2) that it rely on communication conventions of 
the web (eg, URL's). There are several ways to meet these criteria, combining some or all 
of the following: HTML (HyperText Markup Language) JavaScript, Dynamic HTML, Java 
applets, and browser plug-ins with or without LiveConnect2 The primary MOOSE configu- 

When a plug-in is requested for the first time, a request pops up asking the user whether it's ok to 
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ration is web-based: a browser plug-in LiveConncet'ed with Java applets, based on HTML, 
with a sprinkle of JavaScript. MMR can be thought of as a server-side phenomenon, so 
the standard web-based configuration does not include an MMR on the client. We con- 
template supporting three additional configurations, one web-based and the other two not 
web-based. These are (2) a web-based runtime-only (Engine and visualization) configura- 
tion; (3) a "power-user" configuration providing a local MMR and/or a local Java-based 
GUI and/or a TclTk-based GUI, which operate out of the same consistent plug-in top 
level as the web-based configurations, and which may be more appropriate where network 
bandwidth and/or security issues are paramount. Finally there is (4) the original stan- 
dalone configuration of MOOSE. The last two configurations are not web-based because 
they require MOOSE and possibly TclTk to be installed on the local machine. 

3    MOOSE Models 

Above we alluded to MOOSE model definitions in a cursory way. Here we provide sufficient 
detail to motivate and support an explanation of DMML (distributed model markup lan- 
guage), the model definition language used in MOOSE. Although a model author may not 
see DMML, the components of MOOSE with which a model author interacts use DMML 
to communicate with each other; in particular, DMML is the language in which GUI com- 
ponents communicate with MMR. 

A MOOSE model of a physical system is expressed in terms of a conceptual model, a 
dynamic model, and a geometry model. DMML has a representation for each of these; ad- 
ditionally, DMML has a representation to deal with establishing a web-based environment 
in which to work. Before getting to these parts of DMML, we first elaborate the corre- 
sponding parts of MOOSE. The treatment here is necessarily brief; the interested reader is 
referred to our earlier work (ref: see Fishwick ref 8, also our spie 97 paper?) 

3.1    Model Interfaces 

A model interface is an expression of that model's public face to the world at the highest 
level of abstraction, the contract it agrees to follow, while encapsulating (hiding) details 
of its behavior and state. Although not required for an effort focused solely on modeling, 
the model interface is useful when time comes for the simulation which corresponds to 
model A to interact with the simulation coresporiding to model B. This is a topic of great 
interest for example to the Department of Defense DMSO (Defense Modeling and Simula- 
tion Office) HLA (High Level Simulation Architecture) as it contemplates a federation of 

automatically download, install, and start the plug-in. All of this happens automatically and doesn't require 
the browser to be shut down and restarted; accordingly, we consider this sufficiently transparent as not to 
constitute fetching and installing software. Similarly, a Java applet must be downloaded, but the browser 
does this for us, and we do not consider this to be fetching and installing software. 
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independently-developed simulations being able to communicate. We want MOOSE to be 
able to participate in this area, so DMML defines model interfaces. 

3.2 Conceptual Model 

A conceptual model expresses abstractions of relevant aspects of the application domain 
(ref: Coplien p.201), in the form of classes, instances, relations among classes, and relations 
among instances (ref: Hill p. 104). A conceptual model often has multiple views (ref: Booch 
p. 172) to express various kinds of relations, notably composition and inheritance hierarchies, 
as well as possibly to highlight key use-cases (ref: booch p.158 -£ Jacobson ref @ booch 
p.501). The conceptual model embodies Hill's "static aspect" (ref: Hill p.104), and is 
similar to, although simpler than, "the diagrammatic representations used in UML (Unified 
Modeling Language) (ref: see Fishwick's paper ref 3..5). 

3.3 Dynamic Model 

Behaviors of a physical system are represented by its Dynamic Model, comprised of a set of 
dynamic multimodels, each expressing a virtual method of a class defined in the conceptual 
model. Multimodeling selectively refines behaviors as required to capture an appropriate 
degree of fidelity in the most natural metaphor(s). So as not to impose a particular single 
approach on model authors with diverse problems, backgrounds, and preferences, MOOSE 
offers an eclectic mix of popular representations, including finite state machines, functional 
block models, equation models, rule-based models, and system dynamics models; each sup- 
ported by a GUI. Dynamic multimodel types can be arbitrarily mixed and matched by a 
model author; for example, one state of a finite state machine may consist of a functional 
block model with three blocks, one of which is a rule-based model, another a finite state 
machine, and the third an equation model. A dynamic multimodel may extend to arbitrary 
depth, and its elements may be of any dynamic multimodel type. Internally, a MOOSE 
dynamic multimodel is a collection of individual units, and is itself a unit which can be 
included in a larger collection (ref: Gamma's "Composite" pattern, p. 163). It is important 
to distinguish a dynamic multimodel's method signature from its method definition: the 
former belongs to the Conceptual Model; the latter to the Dynamic Model. 

3.4 Geometry Model 

Some parts of a physical system being modeled can be abstracted away; other parts have 
geometric properties that are important to capture so that the model will have requisite 
fidelity. Similar to behavioral abstraction, geometry is subject to composition and inheri- 
tance following the structure provided by the conceptual model (especially by its relations). 
The geometry primitives are attributes of classes of the conceptual model. We originally 
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experimented with TclTk as a language in which to define geometry attributes, including 
having the MOOSE Translator emit TclTk "glue" code to help with output visualization 
at simulation runtime; our current efforts define geometry attributes in VRML (Virtual 
Reality Markup Language); or, more precisely, permit the model author to do so, with re- 
sultant web-based runtime output visualization, involving TCP/IP communication between 
MOOSE Engine and a Java applet which in turn interacts, via shared memory, with the 
CosmoPlayer 2.0 browser plugin. Determining ways to best effect composition of geometry 
elements is an area of active research. 

4    A sample model and use-cases 

Partly because we five within the Florida ecosystem, and partly because of the wider im- 
portance of fragile, irreplaceable natural resources like the Everglades, we have chosen an 
Everglades ecological sample model. One of the waterbirds dependent on the freshwater 
marsh habitat of the Everglades is Rostrahamus sociabilis, the snail kite, an endangered 
species whose range has shrunk to just a few percent of what it once was, partly as a result 
of ill-advised flood-control projects (ref: Myers, p.354). Because of its endangered status, 
the snail kite is the subject of simulation studies aimed at understanding what affects this 
species, in order to find ways to improve its lot.3 The snail kite's food source is the ap- 
ple snail, a species whose success in large measure depends on temperature and hydrology. 
Thus to construct an ecological model for snail kites, it may well be necessary to have an 
ecological model of the apple snail. We might for example hypothesize that diverting water 
reduces snail population, which in turn reduces the ability of the snail kite to eat and to 
breed, and set out to build a model so that we can run the corresponding simulation to test 
this hypothesis. 

Consider this undertaking. The model author, about to begin developing a MOOSE snail 
kite model, is an expert on birds but knows little about snails. Perhaps by word of mouth 
from a colleague, or through a websearch using a search engine (Excite, Yahoo!, Lycos, 
etc.), or perhaps by querying MMR using search techniques we envision but have not yet 
developed, the snail kite model author ascertains that a snail expert4 has developed an 
apple snail MOOSE model. What are some use-cases we can anticipate? 

The kite model author views the snail model, to get a sense of what factors the snail model 
author thinks are important, and learns that these are temperature and hydrology. This 
involves an MMR search, followed by use of the MOOSE conceptual modeler and dynamic 
multimodel editor GUI's to display the snail model. Application domain knowledge is thus 
transferred via a MOOSE model. 

3Such efforts axe part of a study of the Everglades ecosystem being undertaken by the U.S. Department 
of the Interior's ATLSS project. 

4Phil Darby et al. at University of Florida 
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The kite model author now faces a choice: to incorporate the snail model into the kite 
model at model definition time, or to have the kite simulation "federate" with (the output 
of) the snail simulation at simulation runtime. 

Incorporating the snail model into the kite model again involves a choice: the snail model 
definition can either be referenced or it can be copied. A reference will allow improvements 
in the snail model to auomatically appear in the kite model; a copy ensures that later 
changes to the snail model won't make the snail model unusable in the kite model. Each 
approach has merits and risks. The choice depends on the relationship between the model 
authors. A heuristic: if the authors belong to a collaborative workgroup, use reference; if 
they have no ongoing relationship, use copy.5 

A simulation federation also involves choices, of which we set forth two here: (1) the kite 
simulation can simply run the snail simulation and use snail simulation output, as something 
like a table of snail populations to "feed" the kite simulation; (2) the kite simulation can run 
the snail simulation synchronously, controlling its rate of progress, in effect "latching" the 
snail simulation output, and calling snail simulation public methods from the snail model 
interface published through the MMR, to obtain snail data. 

5    Relation of DMML to other Developments 

CORBA (Common Object Request Broker Architecture) is the work of the Object Manage- 
ment Group (OMG), an industry consortium whose stated objectives include the adoption 
of standards for managing distributed objects. OMG developed an Object Management Ar- 
chitecture (OMA) which includes CORBA as the "bus" which forms the basis for managing 
distributed objects. CORBA relies on all specifications being provided in IDL (Interface 
Definition Language) and anything that attaches to the CORBA bus has to be defined in 
terms of CORBA IDL. This permits objects and services written in different languages on 
different platforms to work together. 

Microsoft COM (Component Object Model) is a technology that one uses to define compo- 
nents, which are objects that encapsulate both data and code, and provide a well-specified 
set of publicly available services. DCOM (Distributed COM) extends COM to remote op- 
erations. Clients have access to a COM object only through its interfaces, defined through 
the COM IDL (Interface Definition Language). Features we find attractive to MOOSE 
include stateless poolable objects (ref: sessions p.466), and the use of Monikers as names 
that uniquely identify COM objects, associating a name with its referent, putting it into 
its running state if it isn't already, and returning an interface pointer to it (ref: MS Visual 
C++ 5.0 online documentation). 

The Department of Defense through its DMSO (Defense Modeling and Simulation Office) 

As often happens, we gain insight into the answer to a question in an abstract domain by posing and 
answering a corresponding question in the underlying physical domain. 
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has created its HLA (High Level Architecture) for modeling and simulation. HLA has 
OMT (an object model template) which in turn has a DIF (Data Interchange Format), 
intended to allow simulations to federate by knowing something about the public interfaces 
exposed by each other's corresponding models. (Remember that models don't federate, 
simulations do.) Features we find attractive to MOOSE include (1) the idea of a federation 
of simulations, which interact via knowledge of one another's public interfaces, and having 
MOOSE able to operate within an HLA-compliant federation. We also consider (2) MMR 
to be a good fit with the HLA MSRR (Modeling and Simulation Resource Repository (ref: 
http://www.msrr.dmso.mil). Syntax of the DIF has much in common with that of DMML. 
A practical impact on DMML is that any simulation which implements a model has the 
opportunity to register with the MMR holding the model definition; thus, prospective users 
of a simulation can first examine the model, and, after confirming its appropriateness, select 
any simulation which is an implementation of that model. This provides a mechanism not 
only for multimodeling but also for competitive operations, patterned after the "yellow 
pages". 

6    The DMX Control Panel 

DMML is not only the language spoken between MOOSE GUI's and the MMR to express 
model definitions; it is also the language spoken to the DMX control panel browser plug-in. 
In the latter role, DMML can start a local MMR or connect to a remote MMR; it can 
allow the user full access to its capabilities, provide a reduced set of operations, or put on 
a completely "canned" show. To understand how this works, one must know a little about 
web browser plug-ins and MIME types. 

A web browser such as Netscape Communicator Professional Edition version 4.04 can be 
extended with platform-specific programs known as plug-ins. In an MS Windows NT/95 
environment, for example, a plug-in is a .DLL which becomes part of the browser process, 
sharing its address space. When the browser is activated it looks in certain directory for 
plug-in .DLL files. A plug-in .DLL is created according to certain rule with certain resources 
that, for example, associate it with a MIME type (see below) ) and a file extension. When 
the browser sees such a plug-in .DLL, it ascertains its MIME type and file extension. Then, 
should the browser encounter a URL (Universal Record Locator) or an HTML "jEMBED^" 
tag "SRC" attribute whose file extension matches that of the plug-in, an instance of the 
plug-in will be activated with the specified URL or SRC attribute as its input. 

MIME (Multipurpose Internet Mail Extensions) types (ref: http://www.oac.uci.edu/mdiv/ehood/MIME/! 
are registered with IANA (Internet Assigned Numbers Authority). The set of documents re- 
ferred to below are "Requests for Comment" dated November 1996 and obsolete the earlier 
RFC's 1521, 1522, and 1590 (March 1994) on the same subject. 

• RFC 2045: MIME Part One: Format of Internet Message Bodies 
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• RFC 2046: MIME Part Two: Media Types 

• RFC 2047: MIME Part Three: Message Header Extensions for Non-ASCII Text 

• RFC 2048: MIME Part Four: Registration Procedures 

• RFC 2049: MIME Part Five: Conformance Criteria and Examples 

The MIME type "plugin/x-dmx" and its associated file extension ".dmx" are associated 
with DMML, and the DMX Control Panel browser plug-in. Thus, when Netscape web 
browser sees an HTML document containing, for example, the HTML "jEMBED^" tag 

<EMBED SRC=http://www.eise.ufl.edu/~rmc/sim/test.dmx HEIGHT=450 WIDTH=750> 

the result is to activate an instance of the plug-in, in this case the DMX Control Panel, and to 
pass the SRC URL test .dmx to it as an input stream. The SRC URL directs the behavior of 
the control panel: it can select modes of operation, enable or disable features, even download 
a specific model, put on a complete model building demo, or perform a simulation run with 
output visualization. Normally we do not rely much on these capabilities; instead, we enable 
everything and allow the user to interact with the DMX control panel's full capabilities. 

The DMX Control Panel interacts with the MMR, and with GUI's such as the MOOSE 
Conceptual Modeler and Dynamic Multimodel Editors. Any or all of the following tech- 
niques may be in use, depending on the configuration: (1) TCP/IP is used to communicate 
with MMR. (2) The plug-in spawns processes when a local installationof MOOSE is present, 
such as the TclTk-based GUI. (2) When the Java applet versions of the GUI's are present, 
in the web-based configuration, MOOSE uses LiveConnect and the JRI (Java Runtime In- 
terface) to allow the plug-in to activate instanaces of Java applets and to call their public 
methods. 

The DMX Control Panel thus provides a compatible basis for all supported configurations. 
It has three interfaces: (1) a dialog-based GUI using Microsoft Visual C++ MFC (Microsoft 
Foundation Classes) (2) a URL interface, either through the URL value of the "SRC" 
attribute of an "jEMBEDi" HTML tag, or by direct invocation of the browser on a URL 
of the plug-in's file extension (".dmx"), (3) an API (through JRI) available to Java applets 
and thus indirectly to JavaScript as well. 

7    DMML Example 

The DMML example below is a heavily edited portion of the apple snail model presented 
above. The first statement is an example of the ability of DMML to control web-based 
operations, as mentioned above.   In this case we just identify the (remote) MMR and 
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indicate that it is active. Next we see a model interface for the AppleSnail model. This 
is the public face which the model shows to the world. We are able to see that the model 
outputs an 8 by 12 grid of snail population values with a time scale of months, a time step 
of 0.1 month, over a time interval of 36 months. 

Then comes a conceptual model for AppleSnail. We see some classes defined, some com- 
position (has_a) and specialization (is^a) relations, and examples of geometry with inline 
VRML and an inline dynamic multimodel, in this case a rule-based model. It should be 
emphasized that inline definitions are only one approach, and that a conceptual model can 
instead reference its dynamic and geometry components rather than include them. 

Repository use pegasus is active 

Model Interface AppleSnail 

exports snailpop real array 8 by 12 

time step 0.1 month 

time limit 36 month 

Conceptual Model 

Class Marsh 

has 8*12 CellS 

geometry vrml at clgl.wrl 

Class CellS is_a Container of Cell 

Class Cell 
has_a SnailPopulation 

has_a Hydrology 

has_a Temperature 

Class SnailPopulation 

has_a EggPopulation 

has_a JuvenilePopulation 

has_a AdultPopulation 

behavior HatchEggs is rule_based_model = 

rule_based_model HatchEggs 

input real hatch_rate 

returns int hatched_eggs 

blockl 

premise    month >= 3 AND month < 10 

consequence Marsh::M8 
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block2 
premise    month >= 10 

consequence SnailPop::M6 
topology blockl block2 

INI goes to Bl INI 
0UT1 comes from Bl 0UT1 
0UT2 comes from Bl 0UT2 
Attribute month goes to B2 IN2 
INI goes to B2 INI 
0UT1 comes from B2 0UT1 
0UT2 comes from B2 0UT2 

behavior PopEvolve is system_dynamics_model at c4m2.tpf 
geometry vrml at c4gl.wri' 
real maturation_time 
real juvenile_growth_rate 
real preadult_death_rate 

Class AdultPopiilation 
is_a SnailPopulation 
geometry vrml = 
Transform 
translation 2 0 0 
children Shape 

appearance Appearance 
material Material { diffuseColor 0 0 1.0 } 

geometry Sphere { radius 0.5 } 

Dynamic Model 

8 section 
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1.   Introduction 
OOPM, ("Object-Oriented Physical Multimodeling") 
is an application framework providing components 
and patterns for modeling and simulation [1] being 
developed at the University of Florida. It embodies 
an approach to modeling and simulation which not 
only tightly couples a model author into the evolving 
modeling and simulation process through an intui- 
tive human-computer interface (HCI), but also helps 
the model author with any or all of the following: (1) 
to think clearly about, to better understand or to 
elucidate a model; (2) to participate in a collaborative 
modeling effort; (3) to repeatedly refine a model as 
required to achieve adequate fidelity at minimal 
development cost; (4) to build integrated models 
using existing proven small models as subsystems; 
(5) to start from a conceptual model which is intu- 
itively clear to domain experts, and to unambigu- 
ously and automatically convert this to a simulation 
program; (6) to create or change a simulation pro- 
gram without being a programmer; (7) to perform 
simulation model execution and present simulation 
results in a meaningful way, which facilitate the 
other objectives above. 

In some cases modeling alone, without executing a 
simulation program, suffices to achieve the model 
author's objectives, which may be to learn about or 
better understand a phenomenon or system, or to 
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Figure 1. Metamodel for modeling and simulation 

communicate with colleagues. Usually, however, a 
model author wishes not only to model, but also to 
construct and execute a simulation program (1) to 
empirically validate the model based on observed 
behavior; (2) to select or adjust various parameters 
and values and observe their effects; (3) to measure 
performance; or (4) to gauge model fidelity and as- 
sess its adequacy. 

Figure 1 is a metamodel for modeling and 
simulation, highlighting distinctions among model- 
ing, constructing simulation programs and executing 
simulations. Model authors collaborate to develop a 
model, from which a simulation program is con- 
structed, translated to executable form, and executed; 
the results are visualized or otherwise analyzed. 
Simulation programs developed directly, without a 
platform-independent specification (model), are 
problematic: vulnerable to platform or language 
change, with low readability, low extensibility, low 
maintainability and low reuse potential. Even when 
modeling is used, problems remain: expensive dupli- 
cation of effort, low quality of reproduced "external" 
subsystems, limitations in expressivity of modeling 
frameworks, and limitations on the feasibility enve- 
lope imposed by complexity of the development 
process. 

Currently the Modeling and Simulation (M&S) 
community suffers all these problems. Efficiency and 
productivity of model authors is low, evidence being 
that work usually cannot be reused or readily inte- 
grated into larger new systems [2]. These problems 
propagate to every realm where modeling and 
simulation are used. When a model author sketches a 
"whiteboard model" with annotations, and uses this 
to describe to programmers the design of a 

Execution 
Visualization 

and other 
Analysis 

simulation program to be written, there are pitfalls. 
The programmers write a program, but there is not 
necessarily a relation between the model described and the 
program produced. More formal approaches, such as 
requirements specifications and a traceability matrix, 
reduce ambiguity but introduce an unmanageably 
complex representation and a textual tabular format 
that is decidedly non-intuitive. 

With OOPM, the model author uses visual meta- 
phors in a framework for constructing the model, 
and then a simulation program is unambiguously 
and automatically built from the model. Advantages 
include: (1) built-in model validation [3]; (2) partial 
automation of the development process; (3) built-in 
extensibility and flexibility for accommodating unex- 
pected change [4]; and (4) reduction in development 
time. An additional benefit is the ability to model 
source systems of greater inherent complexity by 
integrating "tried-and-true" existing models as sub- 
systems, because, as Booch states, "A complex sys- 
tem that works is invariably found to have evolved 
from a simpler system that worked... A complex 
system designed from scratch never works and can- 
not be patched up to make it work." [4] 

Extent of detail in a model reflects the model 
author's abstraction perspective [5]. Model refine- 
ment can produce greater fidelity if required by the 
model author's abstraction perspective [6] or by ex- 
ternal criteria [7]. Multimodeling is a recent develop- 
ment [8, 9] which provides multiple levels of 
abstraction [10] to represent geometry and dynamic 
behavior of a model. Multimodeling facilitates: (1) 
model development, selective refinement to achieve 
required fidelity or model extensibility, and accom- 
modating unanticipated change; (2) integration and 
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reuse of object-oriented distributed simulation mod- 
els; and (3) extensibility of the framework itself to 
accommodate future model types. 

Figure 2 shows elements of OOPM. The model 
author interacts with the visual Human/Computer 
Interface (HCI). The HCI has two graphical user in- 
terfaces (GUIs), each supporting a different purpose: 
"Modeler," which is the Model Author Interface 
(MAI), and "Scenario," a simulation runtime visual- 
ization enabler. The model author interacts with 
Modeler to design the model. Modeler relies on Dis- 
tributed Model Repository (DMR, discussed below) 
for model definitions. Scenario activates and initial- 
izes simulation execution, which we name "Engine." 
Scenario maintains synchronous interaction with 
Engine, displaying Engine output in a form meaning- 
ful to the user, optionally allowing the user to inter- 
act with Engine, including modifying simulation 
parameters and changing the rate of simulation 
progress. There are two kinds of distributed model- 
ing and simulation: first, distributed model defini- 
tions, with various model components defined on 
different hosts; second, distributed execution running 
simultaneously on a number of hosts. OOPM focuses 
on the first, as the area of distributed behavioral 
multimodels is our primary research interest; hence 
Scenario, although important, has not received our 
primary focus. 

The OOPM Library consists of: Distributed Model 
Repository (DMR) and Mobile Object Store (MOS). 
MOS holds object data and DMR holds meta-data. 
DMR stores model definitions defined and used by 
Modeler, and also used by Translator. Models and 
model components are available for browsing and 

reuse. Class libraries, such as sets for modeling col- 
lections and popular geometries for spatial models, 
are available to the model author. Model definitions 
can be distributed over several locations. DMR hides 
location-dependent details. This facilitates collabora- 
tion and distributed modeling. Reuse of models, 
classes and objects is thus mediated by DMR. Reuse 
examples appear later in this paper. 

DMR supports the modeling application frame- 
work with more than just a class library: classes are 
related in such a way that a class is not used in isola- 
tion, but within a design encouraged and supported 
by the framework. DMR stores not only a collection 
of classes available for reuse, but also relations 
among models, classes and objects, and classes for 
geometry and behavior. The language-neutral model 
definition by which Modeler and Translator commu- 
nicate with DMR uses the Distributed Multimodeling 
Language (DMML), developed by the authors and 
described elsewhere [11]. 

MOS does for objects much of what DMR does for 
models. MOS works with Engine and Scenario in a 
fashion similar to the way DMR works with Modeler 
and Translator. MOS manages object persistence. 
MOS is architecturally important; however, as our 
focus is on modeling, and most MOS issues relate to 
simulation runtime, our MOS implementation is to 
date minimal. 

Translator is the arrow in Figure 1 between the 
simulation model and the simulation program. 
Translator gets from DMR a language-neutral model 
definition produced by Modeler, and maps it to a 
computer program for the simulation corresponding 
to the model, in a Translator Target Language (TTL). 

Model 
Author 

Modeler 

Scenario 

HCI 

Translator 

3H---1 
DMR 

MOS 

fpTlL: 
Engine 

Back End 

Figure 2. Elements of OOPM; principal interactions indicated by arrows 
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TTL is presently C++; potentially, TTL can be any 
language. The C++ simulation program emitted by 
Translator is called Engine. Once compiled and linked 
with Engine runtime support, the Engine executable 
program is activated under control of Scenario. 

To accompany the explanations that follow, a land- 
scape ecology model is used as the example through- 
out this paper. The model is set in Florida's 
Everglades and is concerned with population models 
of apple snails within a two-dimensional spatial ar- 
ray. Apple snails are an important food of the snail 
kite, a bird which is an endangered species. Reuse of 
the apple snail model in a snail kite model is an ob- 
jective of OOPM. The apple snail model may assist in 
developing the snail kite model. The snail kite model 
may help scientists learn how to prevent extinction of 
the snail kite. 

The balance of this paper is organized as follows: 
Section 2 discusses some related work. Section 3 
explains the object-oriented approach used by 
OOPM, and Section 4 explains how and why OOPM 
employs multimodeling. Section 5 describes visual 
elements of OOPM, such as conceptual models and 
dynamic behavior models, and Section 6 describes 
non-visual elements of OOPM ,such as Translator 
and DMR. Section 7 states our plans and conclusions. 

2.   Related Work 
Research efforts, software engineering tools, and 
object-oriented commercial M&S products abound. 
OOPM differs from each of those, which have been 
surveyed, in one or more of the following ways: (1) 
our primary focus is on architecture and representa- 
tion for distributed model reuse; (2) our model au- 
thor interface (MAI) is wholly graphical; and (3) 
multiple-level behavioral abstractions may be repre- 
sented in any of several alternative ways, each with a 
formal basis in the literature, each with a community 
of advocates. 

In the DEVS system [12,13] there are hierarchical 
behavior models based on proven formalism [14], 
and a one-to-one relation between model-specifica- 
tion formalism and simulator functionality. Behavior 
is modeled with one kind of dynamic model based 
on state machines. OOPM, in contrast, provides five 
kinds of dynamic mujtimodels that may be arbi- 
trarily mixed and matched recursively (heteroge- 
neous multimodeling). We are communicating with 
the DEVS team to determine whether we can com- 
bine the modeling strength of OOPM with the 
strength of the DEVS formalisms and their support 
for a simulation runtime infrastructure. 

Unified Modeling Language (UML) is an object- 
oriented analysis and design (OOA&D) technique 
which derives principally from two antecedents: the 
Booch method [4] and Object Modeling Technique 

(OMT) proposed by Rumbaugh [15]. A useful survey 
of these and other object-oriented analysis and de- 
sign techniques as they apply to M&S is given by Hill 
[16,17]. Ways in which UML differs from the OOPM 
visual modeling environment include: (1) UML dy- 
namics are through one type of dynamic model— 
state charts—whereas OOPM provides five kinds of 
dynamic multimodels that may be arbitrarily mixed 
and matched recursively (heterogeneous multi- 
modeling); and (2) UML state charts are associated 
with a whole class, whereas an OOPM dynamic 
multimodel is associated with each method of a class. 

OOPM is targeted at making distributed model 
reuse practical in a visual setting. Java Beans [18], 
which provides reusable components in a visual 
builder tool, shares many of our objectives: it has a 
visual interface, components may be brought from 
anywhere, and components are self-identifying and 
self-configuring. The Java Beans GUI "Bean Box" 
bean builder tool has three areas: a toolbox, a prop- 
erty sheet and a design area where applications are 
built by associating events of one bean with methods 
of another. Differences from OOPM include: (1) there 
is no concept analogous to DMR, (2) nor is there one 
analogous to DMML, the OOPM model specification 
language, and (3) the GUI is not a modeling frame- 
work and does not represent multimodel semantics. 

3.   An Object-Oriented Approach to 
Integrating Model Geometry and Dynamics 

3.1 An Object-Oriented Approach 
Classes, objects and relations which form the concep- 
tual model in the OOPM digital world correspond to 
elements and relations in the source system. This is 
standard object-oriented methodology. This ap- 
proach (1) facilitates "object identification," which is 
capturing elements of meaning that must be repre- 
sented in the model [19]; (2) is intuitive to model 
authors; and (3) serves as documentation, which 
makes a model more self-explanatory to anyone with 
application domain expertise. Most model authors 
find at least one of the OOPM dynamic behavior 
multimodel types to be intuitive and to be a natural 
way to express behavior of the source system. 

During class and object identification, the model 
author is guided to explicitly recognize the nature of 
relations among classes. Among these relations are 
specialization, generalization [20,21], and aggrega- 
tion [22,4], as depicted in Figure 3. Specialization is 
the relationship of the derived class (subclass) to the 
base class (superclass). An example from biological 
taxonomy is that conch and snail are kinds of gastropod 
mollusk. Generalization is just the reverse: gastropod 
mollusks include whelk and periwinkle. Specialization 
often happens when one needs to extend a class in one 
or several directions; generalization often happens 
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after the fact, as common natures are recognized and 
"factored out." Specialization and generalization are 
associated with inheritance, in which a derived class 
possesses characteristics of its base class; e.g., mol- 
lusks have a foot; therefore the snail, a subclass of 
mollusk, also has a foot. Coplien [23] recognizes in- 
heritance as a solution domain concept that can be 
used for subtyping and for code reuse. Subtyping has 
corresponding meaning in the source system; code 
reuse does hot. Coplien suggests public derivation 
for subtyping and private derivation for code reuse. 
Delegation (which implies aggregation) is sometimes 
better than inheritance for code reuse. In what 
Coplien calls "forwarding"—a weak form of delega- 
tion—a selected subset of constituent class methods 
are made accessible via methods of the aggregate class. 

Aggregation comprises not one but numerous 
overlapping relations, including containment, com- 
position, usage and association, among others [4,22, 
24]. Some examples are a marsh ecosystem contains a 
matrix of patches, a patch consists of water and biom- 
ass, a snail uses sawgrass for food, and a patch is 
associated with climate and hydrology. Sometimes 
deciding which particular relation applies is prob- 
lematic; relations should be examined in the context 
of the source system. As is apparent from the ex- 
amples above, sometimes distinctions cannot be 
drawn with certainty, but models can still be eluci- 
dated adequately, as long as decisions are reasonable 
and consistent. Benefit arises from thinking about, 
discussing and categorizing relations. A reasonable 
amount of effort spent here is worthwhile; the benefit 
is as much from the process as from the results. An 
example of drawing such distinctions is "contain- 
ment by reference" versus "association by referential 
attribute" [22]. Both are pointers, and so there is no 
implementation issue, but the difference is with 

regard to lifetimes. In the first case, the object con- 
tained by reference should live and die with the con- 
taining object; in the second case, the objects have 
independent lifetimes. This distinction may be im- 
portant for the model author. 

As the model author performs object identification 
through OOPM Model Author Interface (MAI), a 
conceptual model is constructed. This mostly visual 
representation is not unlike the "whiteboard model" 
mentioned in Section 1, useful for communication 
with co-workers. Making the classes, objects and 
relations explicit may help the model author gain 
understanding. The process may bring to the surface 
questions and ambiguities that must be addressed to 
achieve modeling or simulation objectives. When 
these matters are resolved, the completed model 
definition is unambiguously and automatically con- 
verted to a simulation program in C++. The model 
author is thus tightly coupled into the modeling and 
simulation development loop. 

3.2 Attributes, Abstract Data Types and Containers 
Attributes are defined for each class. In addition to 
the primitive data types of integer, real and string, 
OOPM permits user-defined types, commonly 
known as abstract data types (ADT), to be attributes. 
ADTs are defined through classes in the model. The 
OOPM representation of aggregation makes constitu- 
ent elements attributes of the aggregating class. The 
best representation depends on (1) cardinality, which 
is the number of items of a constituent type, such as 
the 96 patches in the marsh of Figure 4, and whether 
this number is known in advance and fixed, or is 
inherently variable; (2) the nature of the relation, 
discussed in Section 3.1. 

Cardinality alternatives include: (1) "many," 
which causes a container to be created to hold 

Figure 3. Relations: specialization/generalization and aggregation 
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Figure 4. OOPM conceptual model at left; detail of one class at right 

contained objects of the constituent class; (2) a nu- 
meric cardinality (such as "96"), which also causes a 
container to be created, but additionally automati- 
cally populates the container with the designated 
number of contained anonymous objects; (3) an "A" 
is for an association, meaning a referential attribute, 
which is a reference (pointer) to a named object 
whose lifetime is independent of the lifetime of the 
object of the aggregating class; and (4) "V" is for 
containment by value, which generates a value at- 
tribute within the aggregating class. 

When cardinality of a constituent class is 1, an 
ADT attribute will be created in the aggregating 
class, but a choice remains between value and refer- 
ential. The "lifetime test" is one decision criterion: if 
the constituent object lifetime is independent of the 
lifetime of the aggregating object, then an association, 
represented by a reference or pointer, is best. It is 
also possible for the model author to choose a refer- 
ential attribute when lifetimes coincide; but because 
value attributes require less management than do 
referential attributes, value attributes are chosen 
whenever possible. A second criterion is the "name 
test." If the object of the aggregated class needs to be 
a named object created in another part of the model 
by the model author, a referential attribute, repre- 
sented by a reference or pointer, is in order, irrespec- 
tive of lifetime. Yet we have found named objects to 
be the exception rather than the rule; because names 
are often irrelevant, named objects force more work 
onto the model author, and unnamed objects are just 
as accessible as named objects. OOPM's ability to 
create anonymous objects is quite useful; for example, 

1,000 individual models of mobile entities, such as 
snail kites (birds) in a marsh. The model author con- 
siders snail kite objects a fungible collection, and has 
no need to provide each snail kite with a name, as 
long as it is somehow addressable. OOPM supports 
this addressability through containers. 

When cardinality is greater than 1, and especially 
when the number is uncertain, the attribute is a con- 
tainer class object, holding objects of the contained 
type. For example, SnailKiteS, a container class, may 
be instantiated as a value attribute of the marsh class, 
and may hold 1,000 snail kite objects. Alternatively, a 
SnailKiteS container may hold an arbitrary number of 
snail kites. Container classes have been found effec- 
tive to represent an important aspect of aggregation. 
Provision is made for optional automatic population 
of containers with a specified number of contained 
objects or, alternatively, to allow the model author to 
perform manual population of containers and initial- 
ization of their objects. Container classes can be 
specified directly by the model author, but are usu- 
ally generated automatically by the cardinality of the 
aggregation. Containers have behavior which may be 
extended by the model author: they can send infor- 
mation to their contained objects, execute methods of 
their contained objects/and select a subset of their 
contained objects based on some criteria. These fea- 
tures are similar to work of Zeigler [24]. 

Another aspect of aggregation is how to relate an 
attribute of an aggregate class to the corresponding 
attribute in its constituent classes, when such corre- 
spondence exists. In contrast to delegation, the prob- 
lem here is to invoke a method of every constituent 
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class and transform the results into an overall result 
for the aggregate class. A container known to an 
object of the aggregate class obtains such information 
from all its contained objects. The approach is similar 
to Zeigler's ensemble methods [24]. In the container, 
all contained objects can be dealt with in the same 
way using polymorphism. An example is the biom- 
ass of snails of several age classes (e.g., eggs, juve- 
niles, adults) in an ecosystem simulation. A snail's 
biomass is its weight. Total biomass is the sum of the 
weights of every age class of snail. Moving to a 
higher level of aggregation, a marsh in the Ever- 
glades has a biomass which is the sum of the biom- 
asses of all populations in each of a number of 
patches, which are areas of the marsh. Here the rela- 
tion is summation, and the common base class has this 
functionality. A model author is free to specify what- 
ever functionality is appropriate. 

4.   Facilitating Model Refinement 
Modeling is usually iterative and incremental in 
nature. As the process unfolds, a class hierarchy de- 
velops, taking on a tree-like appearance. Levels in 
this tree are usually related to the level of abstraction 
which one associates with thinking about and de- 
scribing the model. Similarly, as dynamic behavior 
models are specified, using any one of several model 
types, it may be desirable to refine any one element 
of a model into another model in its own right. Each 
element of a model is termed a "block." Examples of 
blocks in a finite state machine are "state" and "tran- 
sition." The model within the block may be either the 
same type or a different type as the type of the larger 
model containing the block. When one can mix and 
match model types arbitrarily in a hierarchy of any 
depth, this is a heterogeneous model hierarchy. 

4.1 Coupling 
To support an arbitrary heterogeneous model hierar- 
chy, our models must be closed under coupling. This 
suggests that the method of coupling one model 
component to another must be clearly defined. Two 
kinds of coupling exist: intralevel and interlevel. 
Intralevel coupling reflects model components 
coupled to one another in the same model. For ex- 
ample, one needs to specify rules of how Petri nets, 
compartmental models and system dynamics graphs 
are formed. With a system dynamics graph, a rule of 
model building defines that any level has an input 
rate and an output rate. 

A more interesting case arises in interlevel cou- 
pling, because we must'ensure that we define rules 
as to how model components from one model can be 
refined into models of different types. Can a finite 
state machine be refined into a Petri net, or can a 

functional block model contain finite state machines 
(FSM) inside blocks? What are the rules to guide this 
refinement? The rule for interlevel coupling is based 
on "block decomposition." Each model is defined as 
a graph, and each graph component is defined as a 
block. This generalizes the semantics normally associ- 
ated with most components to the extent that each 
component now maintains the power and flexibility 
of an object, with its own attributes and methods. For 
example, an FSM can be our candidate dynamic 
model. Since it is, by default, expressed as a graph, 
we take each state and transition and define each as a 
block. State names become block names and transi- 
tions become boolean methods within the block that 
they define. Also, the FSM itself is a block, so that a 
model becomes a block defined in terms of connected 
blocks, which is an architecture that lends itself to re- 
cursively-defined coupling. 

4.2 Multimodeling 
Multimodeling is a recent development [8,9] which 
provides multiple levels of abstraction [10] to repre- 
sent geometry and dynamic behavior of a model. In 
OOPM, multimodeling permits a variety of popular 
dynamic model types, including finite state machine 
(FSM), functional block model (FBM), differential or 
algebraic equations (EQN), rule-based models (RBM) 
and system dynamics models (SDM). When these 
dynamic multimodel types are not appropriate, 
model authors may create "code methods" for dy- 
namic behavior, or as wrappers, to encapsulate 
legacy code. Support for a variety of model types is 
an important intentional departure from the norm. 
Variety contributes breadth which can accommodate 
diversity of background and preference in model 
authors. Breadth is also needed to accommodate 
variety in source systems and application domains. 
OOPM has the capability to seamlessly "mix and 
match" heterogeneous dynamic behavior model 
types at model definition time, and also to "hot swap" 
components at simulation runtime. Multimodeling 
facilitates: (1) model development, selective refinement 
to achieve required fidelity or model extensibility, and 
accommodating unanticipated change; (2) integration 
and reuse of object-oriented distributed simulation 
models; and (3) extensibility of the framework itself 
to accommodate future model types. 

Because model development resources are limited, 
one typically refines using a breadth-first approach, 
and this tree-like structure accordingly takes on an 
uneven shape, with some parts of the tree being of 
greater height, and others being shorter, reflecting 
the underlying decision criterion to refine only as 
needed to achieve required model fidelity. Develop- 
ment is often iterative and incremental. One usually 
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takes a model to a simulation, runs it, and uses re- 
sults to determine where more modeling work is 
needed. Multimodeling can conserve development 
resources by providing an orderly framework within 
which refinement as needed may proceed. A shallow 
model can be run, and analysis can pinpoint model 
subtrees where additional fidelity is needed. This 
adaptive mechanism can focus and guide develop- 
ment. The evolving model is thus its own prototype. 
It needn't be discarded, as in throw-away proto- 
typing, nor does it suffer the chaos that often accom- 
panies the "exploratory prototyping" or "exploratory 
programming'' approach [3]. 

The multimodel definition is recursive: refinement 
proceeds as far as needed. The level of refinement 
may be bound at model definition time or at simu- 
lation runtime. When bound at model definition 
time, the simulation program will not change its 
components on the fly. When refinement is bound at 
simulation runtime, this permits "hot-swapping" of 
components. For example, refinement of such a 
multimodel will change on the fly in response to 
system constraints. A typical constraint is a real-time 
constraint on when the simulation must complete. 
Presently, OOPM does not provide the executive 
logic which decides when to change refinement 
depth; but, given such logic, OOPM has imple- 
mented a capability to reconfigure model refinement 
on the fly. Others are working on providing the ex- 
ecutive logic for this kind of multimodeling in 
OOPM [25]. 

5.   Visual Elements of OOPM 
Visual elements of OOPM include a conceptual mod- 
eler, use of VRML for geometry models, several 
OOPM editors (one for each of five types of dynamic 
multimodels), and Scenario, which provides simula- 
tion runtime output visualization. Supported plat- 
forms for visual elements of OOPM include the 
Solaris dialect of UNIX, Microsoft Windows NT 4.0, 
and Windows 95. 

5.1 Conceptual Models 
The OOPM Model Author Interface (MAI) is a 
graphical user interface (GUI). Modeler relies on the 
Distributed Model Repository (DMR, discussed later) 
to store model definitions as they are constructed, 
and as a source of components for reuse. The main 
part of MAI is Conceptual Modeler, discussed here. 
Additional parts of MAI are a set of dynamic model 
editors, discussed in Section 5.3. A model can be 
created from scratch, or can be an integration reusing 
proven smaller models as subsystems obtained from 
DMR. 

The Conceptual Model defines classes, objects, 
relations among classes, and relations among objects 

(aggregation and specialization or generalization). 
Small rectangles representing classes are arranged, 
using their relations to form aggregation and special- 
ization/generalization hierarchies. When a small 
class rectangle is double-clicked, it opens to reveal 
class detail, including the name of the class, its at- 
tributes, its methods and its named objects. Within 
each method, the model author may specify input 
parameters, output parameters, return type, and 
which dynamic model type the method is to be, or 
whether it is to be a code or constructor method. 

5.2 Geometry 

Our focus is to apply multimodeling to geometry, as 
we do with behavior (see Section 5.3). We do not seek 
to invent a solution for geometry. We prefer to reuse 
existing solutions that already exist. We seek to pro- 
vide the framework to allow powerful capabilities of 
geometry representations such as Virtual Reality 
Modeling Language (VRML) to be available to the 
OOPM model author. 

Geometry relates objects over a space. The OOPM 
geometry class library has classes such as Matrix, 
which represents a two-dimensional grid, like the 
patches in a marsh, and provides two services: de- 
referencing and iteration. De-referencing takes two 
coordinate values and returns the object at that coor- 
dinate. Iteration evokes a particular behavior of every 
object in a set. Matrix is a base class of marsh. This 
confers on a marsh an ability to manage its geometry. 
Many source systems and their models fit this geom- 
etry metamodel. Other geometry types under consid- 
eration for the geometry class library are hierarchy 
trees, such as constructive solid geometry (CSG) and 
quad-tree. 

In the metamodel mentioned above, source sys- 
tems typically have free-roaming entities which inter- 
act and evolve over a field, with the field influenced 
and changed by the presence and activities of the 
entities, defining properties of the space over which 
the field is defined and through which entities move. 
Additionally, each spatial unit may contain objects 
which are fixed to reside in that unit; often a diffu- 
sion process is active over the field. This metamodel 
is descriptive of a wide variety of source systems, 
from polymer chemistry to ecosystems. An example 
of mobile entities would be snail kites (birds) in a 
marsh. An example of a fixed object is the snail popu- 
lation in each patch of the marsh. Diffusion operates 
along gradients in snail population density between 
adjacent patches. 

Early work with OOPM Scenario was done in the 
GUI toolkit (Tk) of Ousterhout's TclTk program. This 
is being supplanted by the Virtual Reality Modeling 
Language for several reasons, including: VRML is 
more immersive; VRML is better suited to Web-based 
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Figure 5. VRML marsh geometry; snail abundance indicated by size of circles 

operation than are Tel applets (Tclets); and VRML 
has better authoring tools. Each class in a model can 
have a VRML attribute. Figure 5 shows a VRML 
model of a marsh, with the size of the circle in each 
patch indicating abundance of snails in that patch. 
The affinity of snails for deeper water can be seen in 
the way the pattern of circles follows the deeper 
channels in the marsh. In a class which is an aggrega- 
tion, such as a patch, the VRML model may include 
VRML models of some constituent classes. 

To illustrate this, consider a patch in a marsh, with 
spatially fixed snail population in the patch, as in the 
first example. Further, suppose the simulation 
runtime visualization is relative abundance of three 
age classes of snails—eggs, juveniles and reproduc- 
tive adults—in each patch, and over all the patches in 
the marsh. The three age classes are snail subclasses; 
each has a VRML model which is a texture-mapped 
shape representing the age class. The patch VRML 
model has the three snail subclass VRML models in 
close juxtaposition, with the size of each shape indi- 
cating relative abundance of that group. The marsh 
VRML model replicates the patch VRML model over 
the Matrix. Figure 6 zooms in on a few patches of this 
marsh VRML model. 

5.3 Dynamic Behavior 
In OOPM classes, dynamic behavior is represented 
by dynamic multimodels, allowing the model author to 
specify a model (and thus its corresponding 
simulation program) without being a programmer. 
OOPM presently incorporates five kinds of dynamic 
multimodels, each presented below. The model 

author is free to use or avoid any particular 
multimodel type, either because of the diversity of 
backgrounds and preferences of model authors, or 
because certain source systems and application do- 
mains lend themselves more naturally to one 
multimodel type than to another. The model author 
can mix and match various dynamic model types 
arbitrarily to define methods of the classes of the 
model. Each dynamic multimodel (1) is created by an 
OOPM visual editor, (2) involves drawing pictures 
like the "whiteboard pictures" mentioned in Section 
1, and (3) has the rigor of the formalism which under- 
lies the multimodel type. 

Every OOPM dynamic model is (potentially) a 
multimodel, with a structure (subordinate elements), 
a topology (how those subordinate elements are con- 
nected), inputs, and outputs. In OOPM, every subor- 
dinate element of every dynamic model (e.g., a state 
of a finite state machine) is an object of a derived 
class of a universal behavior base class, and so can in 
turn be another multimodel of any type, in principle, 
ad infinitum. This not only facilitates model refine- 
ment, it also supports heterogeneous multimodels 
and runtime multimodels (to be discussed later). 

Each method Mj of class Q is a dynamic 
multimodel of some type. Within Q :: My are subor- 
dinate elements. Each such element may be of any 
method: (1) of Q; (2) of any value attribute of C, 
which is an abstract data type (ADT); (3) of any refer- 
ential attribute of Q which is an ADT; or (4) of any 
associated object. The first two groups are bound at 
class declaration time. The third and fourth groups 
permit dynamic binding, and so support 
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Figure 6. VRML marsh; abundance of three snail age groups 
indicated by texture-mapped snail models 

polymorphism—in which an association to an object 
of some base class, such as mollusk, can be satisfied 
by any object of any derived class of mollusk, such as 
snail—and a (virtual) method call will result in a call 
to a method of the appropriate derived class corre- 
sponding to the type of the associated object (snail), 
without the specific type of the associated object 
being known to the calling code. Use of polymor- 
phism permits "hot-swapping" of one model for an 

equivalent model on the fly at runtime, which sup- 
ports runtime multimodeling [25]. 

5.3.1    Finite State Machine (FSM) 

The model author designates a method of a class as a 
Finite State Machine (FSM), and then uses the OOPM 
FSM editor to construct the FSM. An FSM is a di- 
rected graph consisting of states (the nodes) and 
transitions (the arcs). On each transition appears a 

Figure 7. Dynamic multimodel: finite state machine for snail 
population response to changing ambient temperature 
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predicate. Each state and each transition of the FSM 
may be another multimodel. At any time the FSM has 
a current state. Its dynamic behavior causes the FSM 
to change state from state i to state; when the predi- 
cate of transition^ is true. If several transitions have 
true predicates, ties are broken arbitrarily. An OOPM 
FSM is shown in Figure 7, representing snail popula- 
tion response to changing ambient temperature. 

5.3.2    Functional Block Model (FBM) 
The model author designates a method Mj of class Q 
as a Functional Block Model (FBM), and uses-the 
OOPM FBM editor to construct the FBM. An FBM 
has blocks and traces. Blocks appear on the canvas as 
rectangles, like chips on a circuit board. Inputs and 
outputs of each block look like pins on a chip. The 
model author connects various output pins on one 
block to various input pins on another block. These 
"traces" form the FBM's topology. Inputs to the FBM, 
if any, are connected to block inputs. Outputs of the 
FBM, if any, are from output pins of various blocks. 
Cycles are permitted, and these propagate a value at 
one time-step to the next. Several class libraries of 
pre-written blocks are available, but not required, 
including "control applications" (Add, Subtract, 
Multiply, Divide, Integrate, Constant, 
PseudoRandom and Accumulate), the "queuing 
model" (Source, Sink, Fork, Join and Facility), and 

the "flowchart model" (Begin, End, Decision, Process 
and Auxiliary). 

An OOPM FBM is shown in Figure 8 representing 
the life cycle of snails. In the forward direction, eggs 
grow to juveniles, then mature to adults. A cycle is 
explicitly indicated by the trace from reproductive 
adult to egg. The block at the bottom with many 
inputs records results. 

5.3.3    Equation Constraint Model (EQN) 
The model author designates a method of a class as 
an Equations Constraint Model (EQN) [26], and then 
uses the OOPM EQN editor to construct the EQN. An 
EQN model consists of a system of any number of n* 
order differential equations, as well as algebraic equa- 
tions. The syntax is that of C++, and math functions 
such as sin(x) may be used. Differential equations are 
represented using symbols such as x, x' for the first 
derivative, and x" for the second derivative of x. 
Several state variables may appear. The output of the 
system may be any order derivative of any variable. 
If a state variable used in the system of equations has 
the same name as an attribute of the class to which 
the EQN model belongs, then the attribute and the 
state variable denote the same entity. Either updates 
the other as appropriate. 

In addition to variables and their derivatives, a set 
of equations may contain (additive and multiplica- 
tive) parameters and input signals. Parameters may 

Figure 8. Dynamic multimodel: functional block model depicting snail life cycle 
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Figure 9. OOPM system dynamics model for snail behavior 

be attributes of the class to which the model belongs, 
or they may be input parameters to the EQN method, 
or they may be multimodels. 

5.3.4    System Dynamics Model (SDM) 
The model author designates a method of a class as a 
System Dynamics Model (SDM) [26,27], and then 
uses the OOPM SDM editor to construct the SDM. 
System dynamic modeling is a functional modeling 
technique with a variable-based, rather than a func- 
tion-based, approach. Elements of an SDM include 
levels, rates, sources, sinks, constants and auxiliaries, 
as well as two kinds of arcs: flow arcs and cause-and- 
effect arcs. As with other models, elements may be 
multimodels. 

An OOPM SDM is shown in Figure 9 representing 
dynamic behavior of a reproductive adult snail popu- 
lation. Rates which affect the population level include 
maturation, senescence (aging) and death. 

The SDM model is equivalent to an EQN model, 
but some model authors prefer the SDM form. Out- 
put of the SDM model editor is identical to output of 
the EQN editor of an equivalent model. OOPM 
Translator does not know the difference between 
EQN and SDM. SDM is the first multimodel type 
developed in terms of another multimodel type. This 
approach is an example of reuse which may serve 
again in the future to further broaden the model author 
interface while minimizing development effort. 

5.3.5 Rule-Based Model (RBM) 
The model author designates a method of a class as a 
Rule-Based Model (RBM), and then uses the OOPM 
RBM editor to construct the RBM. AN RBM has a set 
of rules, each expressed as a a conditional expression: 
if premise, then consequence. Each premise and each 
consequence can be another multimodel. The RBM 
editor has a premise pane and a consequence pane, 
each of which offers eligible items from lists and for 
specifying relational and logical operators. 

An OOPM RBM is shown in Figure 10 represent- 
ing snail egg population response to changing ambi- 
ent temperature. This RBM is a lower-level 
multimodel within the higher-level system dynamics 
multimodel described in Section 5.3.4 above. 

5.3.6 Code Methods 
Although models can be constructed without writing 
any programs, there may be times when no dynamic 
model type does what the model author wishes to 
do. Or, the model author may have a piece of code 
for a specific algorithm, or some legacy code. For any 
of these reasons, OOPM permits a model author to 
write the body of a dynamic model in C++ code, and 
to integrate that with the rest of the model. The 
model author interface provides a simple text editing 
capability for code methods, but the model author is 
free to use his or her favorite editor instead (any text 
editor that works with ASCII files). 

52 



5.4 Scenario 
Analysis of simulation execution has often in the past 
focused on massive amounts of tabular data. Output 
visualization is effective in facilitating analysis and 
understanding. Scenario does this. Additionally, 
Scenario can initialize parameters and pass them to 
Engine. This is a Model/View/Controller architec- 
ture, where Scenario is View and Controller, and 
Engine is Model. 

The new OOPM geometry representation is 
VRML. Each class may have a geometry attribute, 
which can be or include a VRML world. VRML 
authoring tools are external to OOPM; nonetheless, 
the ability of classes to bring with them their VRML 
representation is valuable for reuse and integration. 

OOPM Scenario is a visualization enabler. Scenario 
activates and initializes simulation model execution 
by running the program we call Engine, at the re- 
quest of the user. Scenario maintains synchronous 
bidirectional interaction with Engine. In the visuali- 
zation, Scenario displays Engine output in a form 
meaningful to the user. In the controlling role, Sce- 
nario allows the user to interact with Engine, modify- 
ing simulation parameters and changing the rate of 

simulation progress. Engine can be allowed to free- 
run, or can be made to single-step through one event 
at a time (the default), or to run at any pace in be- 
tween. As a separate feature, simulation clock time 
scales can be stretched or compressed. Both can be 
combined to generate animations with which the 
model author can interact. Things which happen too 
fast can be slowed down. The rate of progress can be 
adjusted to focus on parts of the simulation execution 
that are of particular interest. 

The first Scenario was based on Tcl/Tk. The new 
Scenario is based on VRML. Both use Transmission 
Control Protocol over Internet Protocol (TCP/IP) 
communication between Engine and Scenario. In the 
TclTk Scenario, communication is between Engine 
and the TclTk interpreter. In the new VRML-based 
Scenario, communication is between Engine and a 
Java applet which resides on a Web page with a 
VRML browser plug-in (CosmoPlayer 2.0) for the 
world being executed. The Java applet communicates 
with the VRML plug-in using the external authoring 
interface (EAI). Activation of the Java applet and the 
VRML plug-in are mediated by our DMX Control 
Panel, which is a coordinator for Web-based operation 
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Figure 10. Dynamic multimodel: rule-based model for snail egg 
population response to changing ambient temperature 

53 



of OOPM. This is outside the scope of the present pa- 
per, but is described by the authors elsewhere [11]. 

Scenario detail is unique to each model. OOPM 
has visualization instruments for reuse, including 
histograms, xy plot graphs and terrain maps. None- 
theless, some simulation output isn't necessarily 
amenable to graphical real-time treatment, and there 
is a necessary role for traditional analysis [28,29,30]. 
OOPM can support this in two ways: Engine can 
send output for this purpose to output examined by 
Scenario, or to a separate file. Further analysis can be 
handled by additional software provided by the 
model author, e.g., MATLAB. 

6.   Non-Visual Elements of OOPM 
6.1 Introduction 

In addition to its visual elements previously dis- 
cussed, OOPM has non-visual elements, which in- 
clude Distributed Model Repository (DMR), which 
holds model definitions; Translator, which maps 
model definitions to simulation programs written in 
C++; and Engine, the simulation program including 
its runtime support libraries. Translator converts a 
model definition obtained from DMR into a simula- 
tion program; Engine is that program. Supported 
platforms for non-visual elements of OOPM include 
the supported platforms for the visual elements 
(Solaris dialect of UNIX, Microsoft Windows NT 4.0, 
and Windows 95), as well as MS-DOS and OS/2. 

6.2 Translator 
Translator obtains a model definition from DMR and 
uses it to construct a simulation program in Transla- 
tor Target Language (TTL). Present TTL is C++. 
Translator output is a complete "Engine" program 
written in C++ including engine.h, a header file con- 
sisting primarily of class declarations, and engine.cpp, 
a source file containing C++ translation of each dy- 
namic model method and each code method, as well 
as code to invoke engine runtime support and to syn- 
chronize with and accept commands from Scenario. 

6.3 Engine 
The Engine is the C++ simulation program generated 
by Translator. It is necessary to compile and link 
Engine source code to create the Engine executable. 
This is done automatically using the "make" utility 
program; alternatively, Engine is compiled and 
linked using the interactive development environ- 
ment (IDE) of a compiler such as Visual C++. At link 
time, runtime support is added from object libraries, 
the most important of which is ooSim [31]. 

Dynamic behavior multimodels are translated into 
C++ code, which relies on the underlying event sched- 
uling of the ooSim dispatcher for propagating event 

chains. ooSim is event-scheduling simulation queu- 
ing model software which is an object-oriented re- 
implementation and extension of the SimPack toolkit 
[26,32]. SimPack is, in turn, based on SMPL [33]. In 
addition to event scheduling, ooSim provides other 
support, such as pseudo-random number generation. 

Engine source file contains code to initiate one or 
more event chains. These event chains propagate 
independently, and the time step of each event chain 
is independent of the time step of every other event 
chain. The event scheduler propagates each event 
chain until that event chain terminates itself, or until 
the simulation clock reaches the overall time limit 
specified for the simulation in the model definition. 
In general, an event chain propagates by reschedul- 
ing a specific event routine which the model author 
identifies. This is accomplished by the autojpropagate 
feature, which is enabled by default. It is also pos- 
sible for the model author to disable autojpropagate, 
in which case the model itself may generate any 
number of event chains following any logic. This is 
an advanced feature which is recommended only to 
those who are familiar with event scheduling in 
ooSim and wish to (or need to) have the additional 
flexibility which manual event scheduling provides. 
Manual event scheduling is not required to get 
OOPM models to run. 

As Engine runs, it executes one simulation event 
after another, driven by its underlying ooSim Future 
Event List (FEL). As an event executes, it may gener- 
ate output. All such output is presented to Scenario 
(see Section 5.4). After executing each simulation 
event, Engine checks with Scenario for instructions 
and new parameter values. The relation between 
Engine and Scenario is inherently interactive and bi- 
directional. Scenario can inject events into the FEL of 
a running Engine. This feature supports distributed 
execution. 

6.4 Distributed Model Repository (DMR) 
In the original development of OOPM, model defini- 
tion persistence was accomplished via textual format, 
in a set of flat ASCII files comprising a model defini- 
tion. This approach had (and still has) a number of 
benefits, including: such model definitions are com- 
pact and relatively easy to read, understand and even 
modify if need be; model definition files get backed 
up as part of local system backups; models can be 
put on-diskette, into a .zip archive, or transmitted via 
ftp; it also is a software engineering tool to eliminate 
development bottlenecks. But this incarnation of 
OOPM is stand-alone software, with no provision for 
sharing, thus limiting reuse. Moreover, this OOPM 
can be used on a machine only after OOPM software 
is obtained and installed on that machine. 
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Subsequent progress on OOPM has continued, 
including: (1) a new approach to model definition 
persistence we call "model repository," and (2) mak- 
ing the modeling environment Web-based. 

The Distributed Model Repository (DMR) holds 
model definitions, including class declarations, decla- 
rations of attributes and methods, and interfaces. 
DMR provides a database management system 
(DBMS) for model definitions. Models and model 
components in DMR are available for browsing, inte- 
gration and reuse. Class libraries for modeling collec- 
tions and geometries for spatial models are available. 
Pieces of a model may reside on different machines, 
thus permitting model definitions to be distributed, 
and permitting collaboration within an engineering 
workgroup on model development. 

DMR is more than a DBMS, however, because it 
transforms information based on multimodeling 
semantics as data arrives. Model analysis is an inte- 
gral part of understanding a model definition. An 
example which occurs whenever a functional block 
model appears is that each block of the FBM must be 
examined to ascertain whether it is (1) a method of 
the class containing the FBM, (2) a method of an ADT 
attribute of the class containing the FBM, or (3) a 
method of some other class. Each case is handled 
differently by Translator: a member method name, a 
method name qualified with the attribute name, or 
dynamic binding of a block from the model's context. 

In addition to the normal mode of receiving model 
definition(s) from the model author interface, DMR 
can also receive model definitions in another way: 
from text files. These files can be created using a text 
editor. Historically, such files were originally created 
by Modeler before DMR existed. These files now 
serve as a way to initialize, back up or load a DMR. 

A reuse example involving DMR is based on the 
real need to model the snail kite, a bird which is an 
endangered species and lives in the Everglades. Snail 
kites eat apple snails, so the snail kite model needs to 
model the apple snail as a food source. The snail 
population is heavily dependent on fluctuations in 
ambient temperature and water depth in the marsh. 
The snail kite model author is an expert on birds, but 
not on snails. If she must write her own apple snail 
model, there will be three drawbacks: (1) its fidelity 
may be lower than it would be if it were written by 
an apple snail expert; (2) the complexity of the snail 
kite model will be greater if writing an apple snail 
model is part of the job; and (3) development time 
will be longer. With this in mind, the snail kite model 
author goes to DMR and learns that an apple snail 
model has already been written. This apple snail 
model was written by a snail expert, has been tested 
and is available. The apple snail model is reused and 
incorporated into the snail kite model, resulting in a 

better quality snail kite model, in which complexity 
is better managed due to the additional abstraction 
levels, and a shorter development time. Space does 
not permit us to go into issues such as how the snail 
kite model author was able to discover the apple snail 
model, but we have presented this elsewhere [11]. 

The Distributed Model Repository (DMR) commu- 
nicates using the connection-based TCP/IP with 
producers and consumers of model definitions, as an 
alternative to the local-file-based model definitions 
mentioned above. Model authors interact with the 
model author interface, but persistent model defini- 
tions reside within DMR; similarly, OOPM Transla- 
tor converts model definitions to C++ simulation 
programs, but model definitions are from DMR 
rather than local files. Benefits include: (1) a model 
defined on machine A can be translated on machine 
B; (2) a model can be defined and/or translated on a 
machine with no (or limited) local persistent store; 
and (3) models reside where they can best be cata- 
loged, indexed, browsed, backed up and otherwise 
maintained, without distracting model authors from 
their primary focus. DMR also permits model sharing 
in a way that was not available before. For example, a 
model defined on machine A can be referenced on 
machines B and C, so A's model is available to B and 
C, or they can agree to divide the work and pool their 
results. This not only (4) increases reuse potential, it 
also (5) provides an environment to support collabo- 
rative development. Disadvantages include reliance 
on network connections and consumption of network 
bandwidth. DMRs may from time to time start and 
stop, so the OOPM universe may have any number 
of DMRs. DMRs know about one another, can for- 
ward requests to their peers and can share model 
information. But DMR does not, in and of itself, make 
OOPM "Web-based." 

Fortunately, there is a way for OOPM to be a Web- 
based modeling and simulation environment. Our 
"litmus test" for whether software is "Web-based" is: 
(1) that it require no installation of separate software, 
and (2) that it rely on communication conventions of 
the Web (e.g., URLs). There are several ways to meet 
these criteria, combining some or all of the following: 
Hypertext Markup Language (HTML), JavaScript, 
Dynamic HTML, Java applets, and browser plug-ins 
with or without LiveConnect. The primary OOPM 
configuration will be Web-based: a browser plug-in 
connected via LiveConnect with Java applets, based 
on HTML with a sprinkle of JavaScript. DMR is a 
server-side phenomenon, so the standard Web-based 
configuration does not include a DMR on the client. 

7.   Plans and Conclusions 
We contemplate supporting three additional configu- 
rations, one Web-based and the other two not. These 
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are (1) a Web-based runtime-only (Engine and visual- 
ization) configuration; and (2) a "power-user" con- 
figuration providing a local DMR and/or a local 
Java-based GUI and/or a Tcl/Tk-based GUI, which 
operate out of the same consistent plug-in top level 
as the Web-based configurations, and which may be 
more appropriate where network bandwidth and/or 
security issues are paramount. Finally there is (3) the 
original stand-alone configuration of OOPM. The last 
two configurations are not Web-based because they 
require OOPM and possibly Tcl/Tk to be installed on 
the local machine. 

Distributed Model Repository (DMR) is a substan- 
tial step in the right direction. Web-based operation 
of OOPM will soon be upon us, and the use of 
DMML as a representation common to all elements 
of OOPM will tie our architecture together in a way 
that we hope will have significant benefits for mak- 
ing reuse of object-oriented distributed models prac- 
tical. We learned that TclTk neither enforces nor 
facilitates object-oriented methodology, and are 
working on a Java applet-based MAI to improve 
reusability and extensibility of our code. Scenario has 
a difficult job, managing simulation runtime output 
visualization even though every model is different in 
surface appearance, but many others have done good 
work in this area and with VRML, we are confident 
that the best features of OOPM can be merged with 
the best features of powerful runtime scenario tools. 
Dynamic behavior multimodel types now imple- 
mented provide breadth, but we are looking at ex- 
tending further in this direction, for example, Petri 
Nets. For model geometry, we need to fully apply the 
same heterogeneous multimodeling which has 
worked well for us with dynamic behavior. We also 
continue to look at immersive technologies for the 
MAI. 
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Computer simulation is a fundamental discipline for studying complex systems. Similar to any other discipline, 
simulation must grow and be fine-tuned so that it maintains its position as the base methodology for carrying out 
computational science and constructing digital worlds. We discuss ten areas outside of simulation and demon- 
strate growth by identifying relationships between simulation and each of the areas. We outline each field by 
describing it briefly and then specifying outstanding issues that remain to be resolved. We have found that we are 
better able to characterize basic simulation methodology by integrating and extending simulation within the 
context of other fields. 

Keywords: Taxonomy, simulation, model design, simulation survey, state-of-the-art 

1. Introduction 
The field of computer simulation is approximately forty years 
old, and it is still vibrant and growing. As technology develops 
faster hardware, old forms of simulation are made to go faster, 
and new varieties of simulation emerge through an extension 
process. Extending the core simulation knowledge base in- 
volves taking existing simulation concepts and blending them 
with concepts outside of the simulation discipline. An example 
of extension is taking two concepts, a system model and an 
abstract programming object (from object-oriented [OO] de- 
sign), and seeing how they relate to one another. We can ex- 
tend system models by designing model components as ob- 
jects. Although this extension seems simple enough, contro- 
versies will arise. Should all physical systems be modeled with 
objects, or are some better modeled with equations, for in- 
stance? How do equational models mesh with object-based 
models? Sometimes, the interface between the simulation con- 
cept and the extensional concept is straightforward, but, in most 
instances, there are many issues to be addressed. The ultimate 
goal within the simulation community is to walk the narrow 
line separating a mathematically defined system theory-based 
foundation, on one hand, and the world outside of simulation 
that encourages extension and possible revision of the basic 
approaches. 

Extension—when used with simulation—means that we 
consider an arbitrary topic and then study how this topic can 
be integrated with simulation. The morphological box concept 
[1] provides a formal way of studying the interaction between 
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different topics and the field of computer simulation. This box 
forms a new relation by considering two orthogonal sets and 
taking the cross-product. The cross-product forces one to study 
interactions in an organized manner. One possible morpho- 
logical box is shown in Table 1. This type of focused approach 
promotes the discovery of new extensions and concepts for 
the simulation field. It is possible that some cells will be empty, 
representing that a clear relationship does not exist for that 
particular row-column combination. This box breaks simulation 
down into three subfields: model design, model execution, and 
execution analysis. Model design reflects how we should de- 
sign and engineer models from concepts to something that can 
be executed on a computer. Model execution includes serial 
and parallel algorithms for simulating the model once it has 
been designed. Execution analysis uses statistical procedures 
to collect data and verify and validate models. These three sub- 
fields are listed as columns. For each row, we list several fields 
outside of simulation. As we will see, these external fields serve 
as vehicles for extension. 

Let us consider the entry in Table 1 identified by the area 
artificial life (AL). The relationship between AL and simulation 
model design is that most models for AL are discrete and spa- 
tial in character. That is, the models use types such as cellular 
automata and L-Systems [2]. To consider the next Bolumn— 
model execution—we will simulate AL models by employing 
simulated evolution with genotypes and operations such as 
mutate and crossover. 

Many fields within the purview of computer science and 
computer engineering serve as candidates for the extension pro- 
cess. That is, we take our simulation knowledge base and cre- 
ate extensions by linking to these fields. The forums for the 
exchange of information and suggestions for extension are 
normally found in simulation conferences, but they can also 
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Table 1. Morphological box for simulation 
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be found in workshops located in the extension disciplines. 
An example of the latter was the series of AI and Simulation 
Workshops held during the National Conference on Artificial 
Intelligence in 1986 to 1990. Another example was the focus 
on object-oriented simulation during the 1993 Conference on 
Object-Oriented Programming and Systems (OOPSLA '93). 
For this article, we have chosen ten fields that have served as 
bases for extension to computer simulation. Most of these ex- 
tensions reflect active research agendas found in most sim- 
ulation conference technical programs. We begin the discus- 
sion by touching on the role of simulation using concepts and 
quotes. This discussion is meant to be general and introduc- 
tory. Then, we will describe ten extension areas. Within each 
area, the following items will be addressed: 

• Definition of the extension area and relevance to simulation; 
• Issues, controversies, and concerns associated with the 

extension; 
• Literature references on simulation researchers working in 

the extension area; 

• Future approaches and forecasts. 

2. Conceptions and Misconceptions 
There are many questions that simulationists as well as others 
ask of the simulation field. These questions suggest that 

simulation is a growing and vibrant field, trying to achieve a 
cohesive organization of technical knowledge. 

2.1 "What Is Simulation?" 
It is difficult to form a cohesive discipline when there is no 
widely accepted taxonomy, although significant efforts have 
been made [3-5]. Let us create a definition for simulation: Com- 
puter simulation is the discipline of designing a model of an 
actual or theoretical physical system, executing the model on 
a digital computer, and analyzing the execution output. From 
this basic definition, we derive the three previously defined 
divisions: model design, model execution, and execution analy- 
sis, and subdefine them as shown in Figure 1. Figure 1 also 
includes cross-references to chapters in a recent book [6]. 

2.2 "Simulation Is a Tool" 
A tool is something that a researcher uses because it is handy 
and useful. Simulation researchers should rejoice in this senti- 
ment because, at the very least, simulation models, algorithms, 
and software are actually being used in the real world No greater 
compliment could be offered. To the extent that the word "tool" 
implies that simulation is not a research area, one should realize 
that when one calls an area X a "tooL" this means only that one 
is not doing research in area X but, instead, needs X as a re- 
source. One person's research serves as another person's tool. 
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Visualization of Data 
Verification 
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Figure 1. Taxonomy for simulation 

2.3 "Simulation of What?" 
Simulation, similar to most disciplines, can be generally di- 
vided into methodology and applications. Sometimes, meth- 
odology is termed theory. As our field matures and builds on 
the solid structure of systems theory, we are developing a sound 
methodology. The importance of methodology—and not just 
applications—cannot be overemphasized. The simulation dis- 
cipline has a core of knowledge that is independent of applica- 
tions. We divide simulation methodology into the subfields of 
model design, model execution, and execution analysis. Meth- 
odology can apply itself to all sorts of practical real-world ap- 
plications, but it is a substantial field by itself. 

2.4 "Simulation Is the Method of Last Resort" 
Methods of analytic (non-time-dependent) modeling have been 
used frequently as a method of first resort because of the ex- 
pense inherent in the simulation enterprise. Two decades ago, 
electronic calculators were definitely the computational tool 
of last resort. After all, they were bulky, expensive, and diffi- 
cult to find. This is no longer the case, since calculators can 
now fit on a person's wrist with ease. Moreover, calculators 
have become easier to use by virtue of their cost. Simulation is 
in a similar situation. As equipment becomes less expensive 
and our methods of programming simulations become more 
efficient (with code reuse and object orientation), simulation 
will become the method of first resort and, frequently, the only 
method. 

2.5 "SimulationsAre Createdwith a Specific Purpose in Mind" 
When one builds a simulation model, it is with the idea of 
answering a certain set or class of questions about the physical 
system being modeled. This is the traditional way that we build 
models and run simulations, but it is in need of an overhaul. 

The reason is that, as simulationists, we should be in the mar- 
ket for designing digital worlds containing digital objects. A 
digital object is one that incorporates all known knowledge 
about that object so that the object appears and reacts to sen- 
sory feedback exactly as the real object would. (Digital object 
behaviors may be different from real time [faster or slower]). 
Moreover, a digital object can be asked questions whose an- 
swers would have to be at varying levels of abstraction. The 
idea that we build models to achieve a singular purpose does 
support analysis by a single user, but we should be building 
models that are robust and can respond to a wide variety of 
real-world sensory interactions and queries from many users. 
Asimulationist's responsibility should be to construct the ob- 
ject methods that define how various pieces of geometry, com- 
prising the digital world, react to user intervention. This type 
of environment will be based on distributed simulation (within 
the Internet), which will foster code and model reuse and, in 
turn, will serve as a basis for digital world construction. 

3. Model Abstraction: Multimodels 
3.1 Discussion 
Modeling complex systems requires a "model of models," or a 
multimodel [6-12]. A multimodel is a network or hierarchy of 
models in which each model represents the physical systems 
at a given level of abstraction or granularity. Homomorphic 
relations formally link each level together, allowing one to 
traverse levels of abstraction. The need for this type of model 
was first brought out in combined simulation efforts. Com- 
bined simulation focused specifically on blending discrete- 
event methods with continuous methods, and multimodeling 
provides an object-oriented methodology to extend this inte- 
gration so that many additional model types can be integrated. 
A multimodel is capable of answering a wide variety of 
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queries and responding to a number of sensory cues (or in- 
puts). In this sense, the multimodel provides the technology 
for making a digital object, which contains all geometric and 
dynamic modeling information associated with that object. In 
addition, the multimodel is computationally more attractive 
than the single-level model because the analyst may weave 
through the abstraction network while focusing the computa- 
tion or dynamics only in those areas that require additional 
computation. An example of this focusing can be seen in cock- 
pit simulators that use a large projection screen on which the 
pilot focuses during a simulated flight. The center of the 
screen—in line with the pilot's foveal vision—uses coarse 
computer graphics rendering techniques since the peripheral 
vision is less acute and in need of less graphical detail. For the 
same reason that we modify rendering complexity, we can also 
manipulate the complexity of the dynamic model used in pe- 
ripheral vision, thereby reducing the complexity of the 
simulation. 

3.2 Issues 
• Is there a need to simulate levels independently ? In most 

cases, given a hierarchy of models, it will be sufficient to 
execute the lowest level model while allowing reporting 
(model output) at all levels. In the hierarchy, a model can 
be "cut out" of the multimodel but then we must deal with 
internal events that serve as input to the model. Normally, 
these inputs come from the next lower abstraction level. 

• If we have the lower level model, why do we need the higher 
level models? Since models represent a human language 
for exchanging information about dynamical systems, re- 
moving the higher level models also removes the more ab- 
stract system knowledge. The abstract knowledge serves 
as an important repository when we wish to reason about 
system behavior. 

3.3 Future 
To make models more robust, we need to have models con- 
taining more than one level of abstraction. Such a model may 
be more complex, but it can answer a larger class of questions 
than a single-layer model. We do not always want to see the 
lowest level of detail for all parts of a process. Moreover, we 
want to be able to tell the simulation what parts are of interest 
to us by tuning in on those parts of the multimodel. The origi- 
nal term combined simulation should be replaced by the more 
general multimodel concept, which fosters an integration of 
basic model types, as shown in Figure 1. 

4. Artificial Intelligence 
4.1 Discussion 
There are two aspects of artificial intelligence (AI) particu- 
larly important to simulation research: using natural language 
and qualitative knowledge, and encoding the decision-mak- 
ing process [13-18]. Humans speak and write in natural lan- 
guage; however, there must be a translation process if this 

knowledge is to be useful to simulation. Most simulations of 
natural or artificial systems are based on quantitative methods. 
In many instances—especially in areas such as social science 
or medicine—model components (parameters, state variables, 
input and output) are defined in natural language or in another 
qualitative representation. There needs to be a way to map qual- 
ity to quantity. Fuzzy set theory is a well-formed discipline for 
mapping quality to quantity. 

Inasmuch as AI methods can be used within a particular 
model design, they are even more useful in modeling the deci- 
sion-making process that envelops the simulation process. 
Simulations are often used in decision making, and expert sys- 
tems can be used to guide which simulations are to be executed, 
and what parameters are to be chosen. The major lesson we 
can learn from AI is that all knowledge about a system should 
be encoded—not only that particular knowledge which is quan- 
titative or amenable to analysis. Expert systems provide a good 
illustration of codifying meta-knowledge about a system, and 
not only low-level aspects of the system. 

4.2 Issues 
• Psychology or engineering ? First, we must decide whether 

the goal of the knowledge-based simulation is to validate 
common-sense human thinking about a system or to vali- 
date a physical system whose model was created via a more 
compiled knowledge approach to human thinking. These 
are two distinct goals. It is straightforward to create a hu- 
manlike model of a four-stroke gasoline engine that is 
physically inferior to the quantitative model although the 
model may represent how a particular human thinks about 
the engine. Only a sturdy experimental method (routinely 
performed in psychology) can validate a model of human 
thinking. Conversely, if the model is to represent a physi- 
cal system, then it must be compared with and contrasted 
against existing physical system models for a domain. 

• Rules or mathematical models ? When applying AI tech- 
nology to simulation, at what level is AI most appropriate? 
Although AI methods can be used to create system mod- 
els, its primary contribution is at the higher level of orga- 
nizing the knowledge that makes up the assumptions in 
modeling and encoding the decision-making process (of- 
ten using rules) used to control simulation runs. For every 
system, we must question whether it is appropriate or rel- 
evant to use rules, equations, or graph-based models. An 
arbitrary choice of modeling technique can be problem- 
atic. Often the answer to the question of level is to strive to 
manufacture multimodels, thereby achieving the benefits 
of each level with its own granularity and definitions for 
mapping. 

4.3 Future 
We must connect common-sense knowledge to the more com- 
piled, detailed knowledge available for dynamical systems. 
Having common-sense models of the world that are disconnected 
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from existing, more detailed models is counterproductive. We 
need to develop ways of building qualitative models that are 
demonstrated to be valid based on what we know about a sys- 
tem. Ambiguous data should be represented in the greatest 
degree of detail possible. Good first steps to defining a variable's 
value are to use fuzzy sets and probability distributions (if a 
sufficient sample is readily available). Expert systems should 
be built to guide simulationists as to what type of model to use 
in a particular circumstance. Right now, we have very few guid- 
ing tools in engineering our models. 

5. Object-Oriented Simulation 
5.1 Discussion 

On one hand, we have the real world, which is full of objects 
and interactions, and on the other, we have a computer pro- 
gram. A central goal in computer simulation is to map one to 
the other [6, 19-23]. The most straightforward way of doing 
this is to create abstract objects in the programming language, 
where these objects map directly to real-world objects. This 
approach was first developed in the Simula language and has 
gained much greater momentum over the past five years. One 
reason for the lag in OO-based design is that no good visual 
analog existed for representing class hierarchies, objects, and 
object interaction. The past five years have produced good vi- 
sual OO techniques, mostly from the software engineering 
community. In addition, these OO visual representations can 
only recently be exploited using recent window-oriented user- 
interface construction kits. 

5.2 Issues 

• Processes or objects ? Should we really be focusing on ob- 
jects, or should we think in terms of processes and activi- 
ties? The two concepts are not mutually incompatible: it is 
natural to create declarative state transition models as an 
object's behavior; however, the objective way of looking 
at the world seems most natural. Declarative model com- 
ponents may be defined by refinement into functional mod- 
els, or vice versa. When looking out of a window, we see 
tree objects with branch subobjects swaying in the breeze. 
We usually do not first see the lumped state called "sway- 
ing branches." Instead, the concept of swaying is located 
within an object as one of its methods. 

• Simulation in software engineering. Many of the examples 
given in recent OO-based software engineering texts ap- 
pear to be simulations. Therefore, there is an intense cross- 
fertilization occurring in this extension area. Programmers 
are finding that it is easier if we create real-world meta- 
phors for programming tasks, and then construct programs 
using these metaphors. For example, instead of writing a 
program to sort n numbers in an abstract manner, let each 
number represent a physical file folder in a filing cabinet. 
Then create a simulation that allows the programmer to cre- 
ate cabinet, drawer, and folder objects while specifying the 
sorting procedure as a method available within the drawer 

object. As a result, the task of programming becomes less 
abstract and more attuned to real-world objects. Since 
simulation is founded on the study of real-world objects 
undergoing change, a natural confluence now exists between 
OO-based design and simulation model design. 

5.3 Future 

We code simulations on a computer using programming lan- 
guages of some sort. It is natural to want our programming 
devices to map clearly to the physical-world devices, and so 
object orientatioji has many advantages. With the multimodel 
extension to object orientation, objects can have several ab- 
straction levels. Concepts from distributed simulation provide 
us with digital objects, which are located with their counter- 
part physical objects. New worlds are created by choosing the 
objects that are needed from wherever they are located on the 
Internet. Objects are then glued together using network mes- 
sages. 

6. Neural Networks 
6.1 Discussion 
Two approaches have been used for applying Neural Network 
(NN) research to simulation: (1) the use of an NN as a behav- 
ioral model to map a systems input to its output regardless of 
the nature of the system, or (2) the use of the network as a 
model of brain activity and human behavior. The first approach 
involves NNs [15,24,25] as repositories of behavior for any 
system, whereas the second approach presupposes that the sys- 
tem under question is an actual brain whose model is to be 
validated against empirical data obtained through experiments 
with a human subject. 

6.2 Issues 
• If we know the model, do we need the NN? Consider an 

equational model of a system, such as the heat or wave 
equation. We could also capture the essence of the wave 
equation, without keeping the equational model, by train- 
ing an NN to store input-output (i.e., behavior) pairs. Do 
we want to do that, however, if the model already does this 
more economically? First, the issue of complexity must be 
addressed: Which modeling method is faster? (The issue 
of speed applies both to the time taken to design the model 
and the time taken to execute the model.) More importantly, 
NNs may be useful to control systems whose internal state- 
based model is difficult to discern or obtain. Therefore, if 
we have an incomplete level of knowledge about a system, 
the NN approach becomes more appealing. 

• What can humans understand from an NN? A chief criti- 
cism of NNs, which really applies to all behavioral mod- 
els, is that humans do not gain insight into the way in which 
NNs perform their internal function. That is, because of a 
lack of states and events—which are understandable to hu- 
mans because of potential state/event mappings to natural 
language—humans are left in the dark. Adequate system 
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control may be achieved, but to what end? Can (or should) 
we create systems that we cannot understand? Some recent 
work attempts to aggregate symbolic knowledge from NNs 
so that humans can gain insights into NN operation. A rea- 
sonable solution is to use NNs as first-cut models before a 
state-space model has been formulated. 

• What about other behavioral models ? The process of using 
a generic model formulation and fitting values for param- 
eters is known as system identification. We should also ask, 
then, where we could use nonlinear or linear regression to 
store input-output system behavior? In addition, to what 
extent do the NN parameters (such as hidden layer makeup, 
biases, and starting weights) need to be tuned to make the 
NN work while roinimizing the error? 

6.3 Future 
Neural networks are good first-cut models for systems for which 
we are lacking information, especially in the relationships 
among state variables. More work should be done to link NN 
behavioral models to state-space models as they are developed. 
The current problem is that NN models for systems are not 
related to other existing models for the same systems. We need 
to tie them together. 

7. Fuzzy Logic and Arithmetic 
7.1 Discussion 
Fuzzy logic is similar to neural networks in that one can create 
behavioral systems with both methodologies. A good example 
is the use of fuzzy logic [24, 26-28] for automatic control: A 
set of rules or a table is constructed that specifies how an ef- 
fect is to be achieved provided an input and the current system 
state. The idea of fuzzy logic is to approximate human deci- 
sion making using natural language terms instead of quantita- 
tive terms. Although fuzzy logic creates a behavioral simulation 
model, fuzzy arithmetic can be blended with classical state- 
based models. Using fuzzy arithmetic, one uses a model and 
makes a subset of the system components fuzzy so that fuzzy 
arithmetic must be used when executing the model. 

7.2 Issues 
• Mien should we use fuzzy sets ? Fuzzy logic and sets have 

been at the center or many debates. Usually, the debate rages 
about the question of whether probability theory can re- 
place fuzzy set theory. For simulation, we should be con- 
cerned about whether there exists any statistical data for a 
given variable. If data exist in sufficient quantity, there is 
less of a need for using fuzzy sets, but fuzzy sets may be 
useful for assigning qualitative values to variables that are 
less well-defined. 

• Does industrial implementation breed research acceptance ? 
Fuzzy logic controllers are appearing everywhere from cam- 
eras to washing machines. Is this the true test of fuzzy sets— 
that they have proven themselves in the form of a consumer 
product, and therefore have a solid foundation? If, by us- 

ing NNs, a product can be made more efficient, then, yes, 
industrial implementation does breed acceptance of fuzzy 
controllers (or NN controllers for that matter). 

7.3 Future 
Fuzzy sets will be used for the same reason as NNs: as behavioral 
models of a system which are easy to create, without having to 
perform a more complicated system identification procedure. 

8. Complex Systems and Artificial Life 

8.1 Discussion 
Our first topic [29-32] of complexity is chaos or the study of 
nonlinear dynamics. We learn from this discipline that models 
with simple structure can often lead to chaotic behavior when 
simulated. Simulation is the only real way of studying these 
systems. Some analytic approaches may be used to obtain rough 
qualitative features of the chaotic attractor and its component 
basins and separatrices; however, by simulating these models, 
we are able to, with precision, numerically determine the ba- 
sins of attraction and other qualitative features of interest. 
Analysis breaks down and simulation is the only viable tool 
remaining. 

Our second topic relates to systems composed of very large 
numbers of homogeneous particles, bodies, or cells. Some- 
times the cells can be different, but usually they have a similar 
structure. Examples of these types of systems are cellular auto- 
mata, Ising models, Boolean networks, percolation lattices, and 
N Body models. Again, simulation is the only viable method 
for studying these systems. We can achieve qualitative insight 
through iterative quantitative means. The field of artificial life 
has sprung up as a branch of theoretical biology. This field 
represents a bottom-up investigation of complexity using the 
computer as a type of scientific laboratory. This bottom-up 
approach to understanding nature is not found only in AL, but 
also in other complex system model types such as lattice gases 
for fluid dynamics modeling. For computational fluid dynam- 
ics, we can use the top-down approach of starting with the 
Navier-Stokes equations, or we can approach the problem by 
starting with elementary conservation laws expressed in cellu- 
lar automaton rules. 

8.2 Issues 
•   Is artificial life a science ? The AL area could be criticized 

because of its bottom-up approach to understanding the 
nature of life, as opposed to the more traditional scientific 
approach of running experiments on real life forms. Con- 
versely, AL uses simulation as "computational science" by 
using the computer as a laboratory tool. We cannot under- 
stand complex systems without simulating them, just as 
we cannot understand nature with operating upon it. The 
models have a life of their own and are no less complex 
because they were created artificially. One way of viewing 
the work in AL is to make a comparison with physics. The 
relationship between AL simulation and the science of 
biology is similar to the relationship between theoretical 
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physics and experimental physics. Theoretical and 
experimental work complement each other. 

•   Simulation as the ultimate laboratory tool. The falling prices 
of hardware and the increasing costs of performing experi- 
ments with real humans and objects cause many experi- 
mental methods to become prohibitive. We must ensure that 
we are not deviating too much from reality and traditional 
experiments, but we must also embrace a new way of do- 
ing science through simulation. 

8.3 Future 

Theoretical studies of complexity, including AL, will continue 
to grow, since simulation has become more effective because 
of technological advances in fast computer architectures. 
Theory should be balanced carefully with experiment. We must 
be wary of simulations, though, that demonstrate an artificial 
system for which valid simulation models exist. For example, 
we could build a spatial model of generic insects with insect 
behaviors without doing a validation. But what does this dem- 
onstrate? If the insect model has not been shown to be physi- 
cally valid, it should be shown to have demonstrated an impor- 
tant theoretical contribution such as replication, or as a gen- 
erator of qualitatively distinct spatial patterns, for instance. The 
purely theoretical AL systems can still be useful, but we need 
to temper our enthusiasm with attempts at some sort of valida- 
tion where possible. 

9. Parallel and Distributed Computing 
9.1 Discussion 

Simulation usually places a substantial load on the computer 
on which the model is executed [33-37]. To speed up simulation 
runs, we can parallelize the model. The vast majority of mod- 
els to be parallelized are spatial: lattice-oriented automata or 
partial differential equations. This is because it is relatively 
straightforward to parallelize over the domain (i.e., two- or 
three-dimensional [3-D] space). Functional models can also 
be parallelized by using conservative or optimistic approaches. 
Conservative methods ensure that causality relations among 
logical processes (functions) are not violated, whereas the op- 
timistic approach assumes that messages arriving first have 
lower time-stamps. In the event that causality is violated, the 
logical process states must be rewound or rolled back 

Aside from the speedup advantage of applying parallel com- 
puting technology to simulation, simulation models can also 
be distributed over a wide area network. One consequence of 
distributed models is speedup as for the parallel case; how- 
ever, distributed models are usually associated with real-time 
interactive simulations such as those used for training purposes 
and combat simulation. Distributed Interactive Simulation 
(DIS) is a substantial research project sponsored by the U.S. 
Department of Defense to allow heterogeneous simulators to 
communicate on a virtual battlefield. 

9.2 Issues 

• Network performance in DIS. There are several problems 
with running simulations over a wide area network. The 
key problem is to reduce the network load given a fixed 
bandwidth. The entity state packet is the element that con- 
tributes the most to the load problem, so dead reckoning is 
used to minimize the number of entity state protocol data 
units that must be issued whenever an entity moves or 
changes its orientation. 

• Where is everything stored? In DIS research, it is not clear 
where to store all of the simulation information, such as 
the terrain and vehicles. An entity has its own state infor- 
mation, but with dead reckoning, the entity also has the 
state information (at some level of detail) of a selection of 
other entities within some radius. Should every entity have 
a complete map of the terrain? Should there be central 
simulation servers or should a strict distributed approach 
be mandated? 

• Extending DIS for all simulation. The work in DIS sug- 
gests that we build a standard for communication among 
all distributed simulations, and not only those used for com- 
bat simulation. The development of new public domain DIS 
tools will be a thriving research area for the future. 

9.3 Future 

Distributed simulation will certainly speed up our simulation 
runs; however, it is also likely to change the way we think of 
simulation models and the composition of such models. We 
need to start thinking of ourselves as digital world builders 
instead of workers building isolated models useful to a small 
number of people. Many parts of the digital world (methods 
and geometry) will be reused using distributed simulation on 
the Internet. Object geometry and methods will be physically 
located where their physical object counterparts are located. 
For instance, if I want to build a digital world that includes an 
automobile traffic network, I will use automobile objects lo- 
cated on-line within the automobile manufacturer's object da- 
tabase. It makes little sense to reinvent object geometries and 
methods for every simulation. If your digital world contains 
lathes, then that link in your distributed simulation will point 
to digital lathe objects stored in the database of the company 
that makes lathes. 

10. Computer Graphics 
10.1 Discussion 

Simulationists regard validation to be of critical concern for 
trusting a mathematical model of a system [38-41]. This con- 
cern is well founded since some model structures or anima- 
tions may "look good," while not being true to the physical 
phenomenon being modeled. Still, the use of graphics and 
immersive interfaces is of major importance to simulation since 
it brings more people into the field. Techniques and tools in 
computer graphics, such as new rendering methods, endow simu- 
lations with the ability to communicate complex behavior in 
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terms easy for humans to understand (visual communication). 
The area of physically based modeling is of particular in- 
terest to simulationists. Simulationists have always used 
physically based models; however, graphics researchers need- 
ing to perform animations have often relied on the multitrack, 
keyframe approach that is simpler and faster. With the onset 
of faster machines, graphics researchers are moving to the 
physically based approach since it yields more realistic ani- 
mations. The goals of computer graphics and simulation have 
traditionally been different: the simulationist seeks valid 
models, and the graphics person looks to create entertaining 
animations. The lines are not clearly drawn anymore. Since 
simulationists employ graphical rendering methods, and ani- 
mators use physically based modeling, there is a convergence 
of interest. The movement of physically based modeling can be 
viewed in the larger sense as a movement to do system mod- 
eling. Keyframe animations are also models, albeit simpler 
discrete-state or -event-oriented ones. 

10.2 Issues 
• Can simulationists use animation techniques? Computer 

graphics is moving in the direction of using more system- 
oriented models, but can simulationists use keyframing 
methods? (A keyframe is defined as an event in systems 
terminology.) At first, this may seem contrary to the aim of 
simulation: validation. Keyframe models are valid; how- 
ever, they are system models defined at a high level of ab- 
straction. Looked at from this perspective, spline-based 
keyframing techniques can be used within multimodel simu- 
lations in those instances where speed is more important 
than visual or statistical accuracy. Validation and accuracy 
need not be systemwide, since the analyst may be focusing 
only on a small part of the multimodel. 

• Icons or rendered scenes ? Many simulations will use iconic 
displays instead of fully rendered 3-D scenes. There are 
two reasons for this: 3-D rendered scenes are compu- 
tationally expensive, and icons may express the necessary 
information content not contained in the scenery. The ideal 
situation is one in which the computer doing the simulation 
is powerful enough to fully render a 3-D geometric model 
of the system, while also having the capability to display 
other sorts of information (numeric, iconic) within the 3-D 
context. 

10.3 Future 
Although many simulation outputs are currently iconic, all 
future simulations will be based on 3-D geometry and advanced 
graphics. You will start with the geometry and assign methods 
and outputs to the geometrical objects. 

11. Virtual Reality 
11.1 Discussion 
In the same way that computer graphics is reducing the man- 
machine communication bottleneck for our model designs and 

their executions, immersive interface technology [42-44] will 
impact the way that we physically interact with the computer 
for model design and execution analysis. Whereas computer 
graphics focuses on a particular aspect of man-machine com- 
munication (i.e., visual feedback), Virtual Reality (VR) explores 
the way in which man and machine can be more harmoniously 
coupled so that users of the computer feel as if they are im- 
mersed in the digital environment rather than being separate 
from it. We need to investigate how our discipline will change 
when modeling, analysis, and execution are performed with 
immersive interfaces. Let us take each of these three simulation 
topics in turn. Object-oriented models, since they map to physi- 
cal phenomena, will mesh nicely with the geometrical objects 
present in the system. Therefore, the modeler will build the 
model to blend with the geometry. Analysis will not involve 
simply a table of statistics. Instead, the analyst will "touch" an 
object and be presented with several ways of obtaining ana- 
lytical results. By pointing to or touching a server object— 
with an interest in throughput—the object's color or transpar- 
ency may change. If numerical results are desired, these statis- 
tics can appear as being physically attached to the server. Fi- 
nally, model execution will involve the analyst being part of a 
dynamically changing digital world. The analyst can observe 
the world from a distance or become part of it—becoming one 
of the objects that is undergoing transition. 

11.2 Issues 
The model behind the interface. VR has received substan- 

tial coverage in the popular press and in new research-ori- 
ented publications. VR is often viewed as consisting of the 
hardware man-machine interface issue. This definition is 
far too limiting, however, and does not reflect the break- 
down of research areas required to make VR work. 
Simulation is needed to drive and respond to the interface. 
The technology of VR and the science of man-machine com- 
munication will require more complex simulation models 
that respond to a variety of sensory cues. 

•   Price/performance and resolution. Unfortunately, all but 
the most expensive immersive interfaces lack suitable 
performance. Although equipment cost is not a technical 
issue, it affects how much effort simulationists can expend 
in linking models to humans through more effective inter- 
faces. The resolution of a device is critical if it is to be 
linked to a simulation. Two major technical hurdles are 
lengthy tracking delays and coarse resolution in helmet- 
mounted displays. 

11.3 Future 
VR represents the future of simulation; however, VR still has 
too much of a buzzword status. To be successful in VR, we 
will need improvements in several basic research disciplines, 
including simulation, man-machine communication, and com- 
puter graphics. We must be careful not to let VR become asso- 
ciated solely with man-machine interaction. It represents a 
much larger movement. 
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12. Information Access 
12.1 Discussion 

Hypennedia [45,46] is the marriage of hypertext and multi- 
media, where multimedia includes documents that contain text, 
images, audio, and video. Simulation will play a major role in 
hypermedia research because many of the existing links that 
reference video and audio files can be defined more generally 
as programs that produce audio and video as output given user 
input. Consider opening up a document that describes a new 
automobile. After reading some textual material on the auto- 
mobile, the user clicks on a picture of an automobile and is 
presented with a menu with the following choices: (1) view 
automobile, (2) drive automobile, or (3) see performance sta- 
tistics. Item 1 would result in a video of the automobile on the 
outside and inside depending on where the user directed the 
viewing using a data glove or other input device. Item 2, how- 
ever, would result in a simulation that would immerse the hu- 
man in a realistic driving experience. The key point is that 
simulation is a natural part of information access and not just 
the generator of information. To weave simulation procedures 
into multimedia documents will require the ability of 
hypermedia products to accept input in a formlike manner (or 
via a VR-type interface) and execute arbitrary programs or 
scripts to engage the simulation. Distributed simulation will 
play an important role in hypermedia document retrieval since 
it is most likely that large complex, but partitionable, models 
will be distributed, requiring the model execution to be distrib- 
uted as well. If there are a sufficient number of readers of the 
documentation, real-time distributed interactive simulation will 
also be possible while browsing or searching for information. 

The World Wide Web (WWW) is a network of hypermedia 
documents that are located on the Internet. Therefore, WWW 
sits on top of the Internet, providing a hypermedia information 
infrastructure. Client programs such as Netscape allow the user 
to view the documents containing text, audio, and video. With 
Netscape's introduction of forms, users can use WWW as an 
interactive testbed and not just a means for obtaining static 
information. For simulation, the interaction is critical. The tools 
are in place today for embedding simulation models and their 
outputs into the WWW, and it is quite possible that WWW- 
based simulation will become the most predominant mecha- 
nism for running any simulation. After all, a user will gener- 
ally begin the man-machine interaction process by obtaining 
bits and pieces of information. Many queries will result in static 
data transfers, but a growing number of queries will necessi- 
tate simulation and the use of active data constructs. Database- 
centered simulation approaches are also important to simulation 
since the models will have to be stored and retrieved in a logi- 
cal manner. Object-oriented languages, for the most part, do 
not incorporate the idea of object persistence, and therefore, 
do not support object-based structures in an independent fash- 
ion. Object-oriented databases will achieve this purpose. 

12.2 Issues 

•   Simulation protocol. How is simulation information to be 
transmitted over the WWW? The existing standard for DIS 
provides some good ideas for packets and their constitu- 
ents. The information exchange methods used by client pro- 
grams such as Netscape and hypermedia-based electronic 
mail programs that incorporate MMEs (Multipurpose 
Internet Mail Extensions) can be used as a basis for future 
hypermedia communication. One approach is to extract con- 
cepts in DIS that are generic enough for any type of 
simulation and then use the MIME format and WWW as a 
foundation for further development. 

12.3 Future 

Simulation is an integral, fundamental part of information ac- 
cess. For too long, information has been seen as being static in 
the form of text and images. With the addition of video and 
audio, we now see that information can include time-depen- 
dent information. A natural step in this direction is to have 
underlying processes producing the video and audio sequences. 
This production is achieved by using simulation. 

13. Conclusions 
By combining computer simulation with other disciplines, we 
obtain extensions that are used to better solidify the current 
foundation for simulation methodology. We have presented ten 
fields and their relationship to simulation, along with some 
current research issues and citations to the literature. It is im- 
portant that we relate our work to other fields on a continual 
basis. Without these relations, we can move in the wrong di- 
rection or miss a vital convergence that is occurring in other 
related fields. As it happens, simulation is repeatedly seen as a 
foundation for many other fields such as those presented herein. 
There is still quite a bit of work to be done in better organizing 
the simulation field into the three aforementioned subfields of 
design, execution, and analysis. The plethora of modeling 
methods must be contained and categorized so that we can 
restore some logic to simulation methodology. A constant push- 
pull process between extension and integration is necessary 
and will move simulation into the forefront as a core disci- 
pline for creating digital world representations. 
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While complex behavior can be generated through simple systems, as in chaotic and nonlinear systems, com- 
plex systems are found where a systems study contains multiple physical objects and interactions. Through the 
use of hierarchy, we are able to simplify and organize the complex system. Every level within the hierarchy 
may be refined into another level System abstraction involves simplification through structural system repre- 
sentation as well as through behavioral approximations of executed model structure! There has been little 
work on creating a unified taxonomy for model abstraction, and a presentation of such a taxonomy is our main 
purpose. We present the taxonomy and define two major sub-fields of model abstraction, while illustrating 
both sub-fields through detailed examples. The introduction of this taxonomy provides system and simulation 
researchers with a way in which to view and manage complex systems. 

Keywords: Model abstraction, modeling methodology, system identification, nonlinear dynamics 

1. Introduction 
Real world dynamic systems involve a large number of vari- 
ables and interconnections. Abstraction is a technique of sup- 
pressing details and dealing instead with the generalized, ideal- 
ized model of a system. Computational efficiency and represen- 
tational economy are main reasons of using abstract models in 
simulation [1-3] and well as in programming languages [4-6]. 

Although many diverse areas employ abstraction methods, 
no agreed-upon taxonomy has been developed to categorize 
and structure them with underlying characterization of a gen- 
eral approach. Our goal is to clarify how abstraction methods 
relate to each other under a uniform taxonomy. We define sys- 
tem abstraction to be one of two types: behavioral or struc- 
tural. Structural abstraction is a process of organizing the sys- 
tem hierarchically using refinement and homomorphism. Re- 
finement is the process of refining a model to more detailed 
models of the same type (homogeneous refinement) or differ- 
ent types (heterogeneous refinement), while homomorphism 
is a mapping that preserves the behavior of the lower-level 
system under the set mappings [7]. Behavioral abstraction fo- 
cuses only on behavioral equivalence without structural pres- 
ervation. In most cases, one should explore both of these meth- 
ods when constructing systems. For instance, when a system 
is first being designed, one should construct it hierarchically, 
with simple model types at first, refining them with more com- 
plex model types later. Structural abstraction corresponds to 
this iterative procedure [8-10]. After creating the hierarchy, 
wc may want to isolate abstraction levels, so a level can be 
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executed apart from the rest of hierarchy with no detailed in- 
ternal structure. This is where the behavioral approaches are 
employed. Below the structural abstraction, each component 
is black-box with no detailed internal structure. Behavioral ab- 
straction is used to represent those black-boxes by approxi- 
mating the behavior of the system components. By combining 
structural and behavioral abstraction together, each level of 
abstraction is independent from the lower abstraction levels, 
so a level can be executed apart from the rest of the hierarchy. 
In depth discussions of each abstraction technique follow in 
the subsequent sections. 

Our contribution is the formulation of a taxonomy captur- 
ing two types of abstraction, which have generally been 
overviewed in separate disciplines. Structural abstraction is 
found mostly in information on design, whereas behavioral 
abstraction is strewn across many fields of computer science 
and simulation. Through a unification in terminology, we dem- 
onstrate that structural and behavioral methods are comple- 
mentary aspects of system abstraction. Structural abstraction 
is common in programming language development within com- 
puter science as well as in simulation. Behavioral abstraction 
is common in statistical analysis and automatic control where 
system abstractions are used in lieu of more complicated model- 
based transfer functions. Along with our discussion of the tax- 
onomy, we present examples of each approach to complete the 
discussion. 

The paper is organized as follows: wc present the new sys- 
tem abstraction taxonomy with specific methods of each cat- 
egory in Section 2. Then we illustrate the abstraction types 
using two scenarios and show how abstraction methods per- 
form in both linear and nonlinear system abstraction, in Sec- 
tions 3 and 4. We .Close with a summary of the taxonomy and 
its advantages, with future goals to-be achieved. 
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2. Abstraction Taxonomy 

A system consists of data and model components. Data refers 
to values obtained either by observation or arbitrary assign- 
ment of values to model components. Model components, 
which serve as fundamental building blocks for models, take 
on the data values. Sample model components include state 
and event [7]. Figure 1 illustrates our abstraction taxonomy.. 
We sub-define structural abstraction of a system into data 
abstraction and model abstraction by the definition of system. 

• Data Abstraction: abstraction of input, output, time or 
parameter system values or time-dependent trajectories. 

• Model Abstraction: abstraction of dynamical models. 

Data abstraction represents a way of compressing time-de- 
pendent information and characterizing a "higher level" of data 
type. Examples of data abstraction types are symbolic value, 
statistic mean and variance, interval, ratio and fuzzy sets. 

Models must be multi-layered so that different abstraction 
levels of the model respond to different needs of the analyst 
[2,11,12]. By the method of constructing multi-layered model, 
we further refine model abstraction to homogeneous and het- 
erogeneous abstraction. In homogeneous-structural abstraction, 
dynamical systems are abstracted with only one model type. 
Each model component is modeled with one model type and 
refined with the same model type. Selection of specific model 
type is important and depends on the information that one ex- 
pects to receive from analysis. For example, one would not 
choose to model low-level physical behavior with a Petri net 
since a Petri net is an appropriate model type for a particular 
sort of condition within a system, where there is contention 
for resources by discretely-defined moving entities. Examples 
of methods for homogeneous-structural abstraction are con- 
ceptual, declarative, functional, constraint and spatial model- 
ing. Detailed discussion on each model type is shown in [7]. 

In heterogeneous-structural abstraction, different abstrac- 
tion levels of a system are provided by allowing either homo- 
geneous or heterogeneous model types together under one 
structure. To incorporate different levels together, we have con- 
structed a multimodeling methodology [13-17], which pro- 
vides a way of structuring a heterogeneous and homogeneous 
set of model types together so that each type performs its part, 
and the behavior is preserved as levels are mapped [3, 18, 19]. 
Heterogeneous structural abstraction is equivalent to 
multimodeling in the sense that we abstract a system structur- 
ally mapping one level to another, providing multiple level 
abstractions. While the multimodel approacli is sound for well- 
structured models defined in terms of state space functions 
and set-theoretic components, selecting system components 
in each level^is dependent on the next-lowest level clue to hier- 
archical structure. This implies that we are unable to run each 
level independently. It is possible to obtain output for any ab- 
straction level but, nevertheless, the system model must be 
executed at the lowest levels of the hierarchy, since (here is 
where we find the actual functional semantics associated with 
the model. A new definition and methodology are needed to 

Multimodeling 

Structural Behavioral 

Data Model Static Dynamic 

Homogeneous Heterogeneous 

Figure 1. Proposed taxonomy for abstraction 

better handle abstraction of systems and components. This is 
where the behavioral abstraction approaches are employed. 
By incorporating behavioral abstraction approaches into 
multimodeling methodology, abstraction in multimodeling al- 
lows each level to be understood independently of the others, 
so that discarding all the abstractions below any given level 
will still result in a complete behavioral description of a sys- 
tem [8]..This is why we put multimodeling on the top of our 
abstraction taxonomy. 

Behavioral abstraction is where a system is abstracted by 
its behavior. We replace a system component with something 
more generic which produces behavior which approximates, 
to some degree of accuracy, the behavior of the system com- 
ponent at its refined levels. With the help of behavioral ab- 
straction, discarding the refined levels that define a system 
component will still result in a complete behavioral descrip- 
tion of a system [8]. The components are "black boxes" with 
no detailed internal structure. Behavior is defined as a set of 
input-output pairs defining a black box. We have two ap- 
proaches to specifying system behavior: 

• Static approach: one takes a system and captures only the 
steady state output value instead of a complete output 
trajectory. The input value is defined to be the integral of 
time value over the simulation trajectory. 

• Dynamic approach: one needs to associate time-dependent 
input and output trajectories. 

Though static and dynamic approacli describe different al- 
lowable behaviors of the same phenomenon, abstraction tech- 
niques for dynamic approach can be applied to static approach 
also. Therefore, we shall focus on dynamical behavioral ab- 
straction for illustrating abstraction techniques. 

Wc denote the output of the dynamical system at time t by 
y(t) and the input by «(/). The data, defining system behavior, 
are assumed to be collected in discrete time. At lime / we have 
the data set 

y(l),«(U,v.'.,y(/),«(0. (1) 
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A model of a dynamical system can be seen as a mapping from 
past data Z1"' to the next output y(t): 

y(f) =|(Z'-1). (2) 

A "hat" on y is to emphasize that the assigned value is a pre- 
diction rather than a measured, "correct" value for y(t). The- 
problem of dynamical behavioral abstraction is to find a map- 
ping g that gives good prediction in equation 2 using the in- 
formation in a data record Z. 

System identification [20,21] is the theory and art of build- 
ing mathematical model of g. Modeling the system consists of 
selecting a general, parameterized mathematical representa- 
tion and then tuning the parameters, so that behavior predicted 
by the model coincides with measurements from the real sys- 
tem. Parameter estimation procedure provides a search through 
parameter space, effectively, to achieve a close-to optimal 
mapping between the actual values of the system and the ap- 
proximate abstract system. Commonly used parameter mod- 
els are ARX, ARMAX, OE (Output Error) and BJ (Box- 
Jenkins) [20,22]. Brief explanations of these models are shown 
in Sections 3.2.2 and 4.2.1. 

Most of the existing identification methods are, in essence, 
gradient-guided local search techniques which require a smooth 
search space or a differentiable error energy function. Con- 
ventional approaches can thus easily fail in obtaining the glo- 
bal optimum if the multimodel search space is not differen- 
tiable or the performance index is not well-behaved in prac- 
tice [21, 23]. Genetic algorithms represent one way to handle 
this problem. The genetic algorithm is fine-tuned by simulated 
annealing, which yields a faster convergence and a more accurate 
search through the parameter spaces. This global search technique 
is used to identify the parameters of a system in the presence of 

Table 1. Sample abstraction categories arid associated techniques 

Base Abstraction "type 

Data Abstraction 

Structural Abstraction 

Behavioral Abstraction 

Abstraction Technique 

Symbolic Value 
Mean, Variance 
Interval, Ratio 
Fuzzy Number 

Conceptual Modeling 
Declarative Modeling 
Functional Modeling 
Constraint Modeling 
Spatial Modeling 

Regression 
System Identification 
Neural Network 
Wavelet 
Genetic Algorithm 

white noise and to approximate a nonlinear multivariable system 
by a linear time invariant state space model [22]. 

Neural networks have been established as a general approxi- 
mation tool for fitting models from input/output data [24-27]. 
From the system identification perspective, a neural network 
may be considered as just another model structure [21, 28]. 
The inputs are linearly combined at the nodes of the hidden 
layer(s) and then subjected to a threshold-like non-linearity, 
and then the procedure is repeated until the output nodes are 
reached. These produce the values that should be matched to 
the variable y(f) in the observed pair (y(f), u(t)). Thus, behav- 
ioral abstraction by neural networks is to findgfe 6, u(t)), where 
6 represents the weights of the linear combinations involved 
in network structure. Backpropagation, recurrent and tempo- 
ral neural networks have been shown to be applicable to sys- 

"tem identification [8,29, 30]. On the other hand, recently in- 
troduced wavelet decomposition achieves the same quality of 
approximation with a network of reduced size by replacing the 
neurons by "wavelons," i.e., computing units obtained by cas- 
cading an affine transform and multidimensional wavelets [23]. 

Table 1 summarizes the base categories along with some 
sample abstraction techniques discussed so far. Having defined 
the model abstraction taxonomy, we now proceed to illustrate the 
different abstraction techniques using the following two scenarios. 

3. Sample System I: Boiling Water Example 

Consider a pot of water in Figure 2. Here we show a picture of 
the boiling pot along with an input and output trajectory. The 
input reflects the state of the knob, which serves to specify 
external events for the system. The output, T, defines the 

Input 
Trajectory 

*»   600 1200   1400   1600  1800 

Water 

Copper Pot 

Heating Element 

Knob o 
Olll/Hlt 

Trajectory 

WHI        '•   MHI |IK«J 1:1X1 tllKt |MI 

Figure 2. Boiling water system 
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temperature of the water over time. Let us define the thermal 
resistance R = H/kA (H is the height of water, A is the surface 
area of the pot, and k is the thermal conductivity of water). We 
will ignore the resistance of the pot since it is not as significant 
as the resistance of water. The definition for thermal capaci- 
tance CisCT = qlf with qh being the flow of heating element 
to the water, and C being the total capacitance. Newton's law 
of cooling states that Rqh = AT=Tt-T2 where Tx is the tem- 
perature of the source (heating element), and T2 is the tem- 
perature of the water. qh is heat flow. Since T2 isour state vari- 
able, we let r= T2 for convenience. By combining Newton's 
law with the capacitance law, and using the law of capacitors 
in series, we arrive at 

T = KTi-T). 

(3) 

(4) 

3.1 Structural Abstraction 

The structural approach to system abstraction for the boiling 
water is defined in a recent text [7] where the boiling water is 
included as a subsystem within a system of two flasks, and a 
human operator who mixes the flasks once the liquids are boil- 
ing. In the structural abstraction approach to systems, we first 
need to define our levels of abstraction and then choose which 
models types to use at each level. In [7,13,14], we have the 
following model levels: 

1. Level 1: Petri net, defines the action of the human operator 
and the mixing process. 

2. Level 2: FSA (Finite State Automaton), defines the phases 
of water during heating and cooling. 

(a) Sub-level 2.1: FSA, defines two states: coWand 
not cold. 

(b) Sub-level 2.2: FSA, defines four states underneath not 
cold: heating, cooling, boiling and exception. 

(Overflow) I 

l=ON or l=OFF 

Figure 3. Six state automaton controller for the boiling water multimodel 

Figure 4. Decomposition of Hcaihif; st;ile 
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(c) Sub-level 2.3: FSA, defines two states underneath 
exception: overflow and underflow. 

3. Level 3: Block model, defines Newton's Law of Cooling 
subdefining both cooling and heating phases. 

We show part of the multimodel in Figures 3 and 4. The 
first model is a compressed version of all the hierarchy speci- 
fied in Sub-levels 2.1-2.3 above. For the FSA in Figure 3 w.e 
choose to represent each state as a continuous model. Specifi- 
cally, each state will define how three state variables, T (Tem- 
perature), Hw (height of water), and Hf (height of foam on the 
top of the water) are updated. Also the parameter //, is the height 
of the pot. / indicates knob's position, and a is the ambient 
temperature of the water. Figure 4 shows Newton's law of cool- 
ing in a functional block form. 

_! I 

' 0 20        40        60 )        100       120       140       160       180       200 
Elapsed time 

Figure 5. Elapsed time versus temperature 

1201 1 r- 

0   20  40   60   80   100  120  140  160   180  200 
Time 

Figure 6. Linear regression 

3.2 Behavioral Abstraction 

3.2.1 Static Approach. In the static approach, we are inter- 
ested only in the final (i.e., steady state) temperature of the 
water. A trajectory of final temperature of the water is obtained 
by varying total amount of simulation time. Figure 5 shows final 
temperature versus simulation elapsed time. This information is 
obtained directly from the underlying simulation of the boil- 
ing water system. We chose a subset of all possible input time 
trajectories in such a way that some nonlinearity was intro- 
duced into the graph in Figure 5. This was done to challenge 
the behavioral parameter estimation methods in creating a good 
fit. This explains why Figure 5 contains a small area of discon- 
tinuity in the region between steady state temperature values of 
20 and 40. We approximate final temperature by integral value of 
knob's On/Off trajectory over simulation. 

Linear Regression. In general, a polynomial fit to data in vec- 
tors x and y(x:input, y:output) is a function, p, of the form 

p(x) = C,X" + CjX"" ' +...+ cd (5) 

The degree is n and the number of coefficients \sd=n+\. 
The coefficients cl,c2,...,cn are determined by solving a sys- 
tem of simultaneous linear equation: Ac = y, where A is matrix 
whose columns are successive powers of the x vector. Figure 6 
shows the result. The approximation is poor in the graph's cen- 
tral region because linear regression is done by polynomial fit, 
and so it generates a monotonically increasing function. 

Backpropagation Network. One of the traditional uses of a 
neural network is function approximation. The typical two layer 
architecture used for a function approximation network is 
shown in Figure 7. It has one hidden layer of sigmoidal neu- 
rons that receive inputs directly and then broadcast their out- 
puts to a layer of linear neurons, which compute the network 
output [31,32]. Figure 8 shows the approximation result. This 
also shows poor performance in abstracting the sharp chang- 
ing part like the linear regression model. 

Input Neuron Layer 1 Neuron Layer 2 

Wl 

Weight 

Bl 

Bias 

"f 
W2 

Weight 

B2 

Bias 

-f 
Output 
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Figure 7. Backpropagation network 
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Figure 8. Backpropagation network for Boiling Water Example 

Figure 10. Abstraction error in Box-Jenkins method 

3.2.2 Dynamic Approach. In the dynamic approach, we are 
interested in time dependent behavior. In this case, we are con- 
cerned not only with the steady state temperature but also the 
way in which the temperature changes over time. For this ap- 
proach, we chose a system with just one input and one output, 
both time-varying trajectories. The input is the input "knob 
off/knob on" trajectory and the output is the temperature tra- 
jectory. 

Linear System Identification. The Box-Jenkins method is a 
frequently used system identification method in time series 
analysis |20, 26, 27]. Its structure is given by 

*'> = ^»<<-»«*ä:> (6) 

with 

Figure 9. Box-Jenkins method for Boiling Water Example 
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Where 

R = #  of Inouts.    S = # Neurons 
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Figure 11. ADALINE network 

y(t): outputsignal 

B(q) = bt + b,q' + ... + b^q"1' 

C(q) = 1 +cy/' + ... +CJI": 

D(q) = 1 +dlq' + ... +dji"'' 

The numbers nb, nc, nd, and «/are the orders of the respective 
polynomials, and (/ is the shift operator. The number nk is the 
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Figure 12. ADALINE network for Boiling Water Example Figure 13. Abstraction error in ADALINE network 

number of delays from input to output. Figure 9 shows the 
approximation result Successful identification of y(f) depends 
on how well we guess the values of nb, nc, nd, nf, and nk. 
Heuristics and "expert rules," if available, aid us in choosing 
parameters. For example, a large value for a parameter results 
in computational difficulties to generate y(ff, while a small 
value results in a rough estimation. We often had to tune pa- 
rameters by hand in order to get a good approximation. 

ADALINE Neural Network. ADALINE was developed by 
Widrow and Hoff [33]. Their neural network model differs 
from the perception [32] in that ADALINE neurons have a 
linear transfer function. The ADALINE network also enables 
the Widrow-Hoff learning rule, known as the Least Mean 
Square (LMS) rule, to adjust weights and biases according to 
the magnitude of errors. The ADALINE network for our ex- 
ample is shown in Figure 11 with one layer of S neurons con- 
nected to R inputs via a matrix of weights W. Figure 12 shows 
the output signal of the linear neuron with the target signal. An 
ADALINE neural network takes initial weights and biases, an 
input signal and a target signal, and then filters the signal 
adaptively based on input delay and learning rate parameters. 
In most cases, input delay can be guessed by the modeled sys- 
tem itself. For boiling water example, we know an output at 
time t is determined by two most recent inputs. However, choos- 
ing a good learning rate cannot be implied by the modeled 
system itself, but through trial and error. Too large a learning 
rate results in a rough estimation, while too small a value re- 
sults in severe perturbations during the learning stage. 

Gamma Network. The Gamma network can lie regarded as an 
extension of the Multilayer Perceptron (MLP). It includes 
memory structures so that temporal patterns can be converted 
into static input patterns. A Gamma network focuses on the 

-9 

Gamma Memory 

i-e i-c 

JLöJilJ~zr|-^/ /_K>JÜ~Z
;
1-UD 

Figure 14. Gamma network 

network architecture whose memory structures are imple- 
mented only at the input layer to alleviate the difficulty in de- 
termining the memory order [34,35]. A schematic diagram of 
Gamma network for our example is shown in Figure 14. The 
abstraction result for the Gamma network is shown in Figure 15. 
A Gamma network takes a number of hidden nodes, the order 
of gamma memory, and number of steps for both feed-for- 
warding and back-propagation, as parameters. Parameter 
tweaking by hand is needed to accomplish a good abstraction 
due to (he absence of a systematic approach. 

75 Volume 13, No. 4    T»..\ «J/IL  I I lONti 223 



December  TRANSACTIONS  1996 

100 f\ >r T 90 \               I \ ■ 

80 1 ■ 

i 

1   ™ 
s 

11 

it 

S   60 11 

i» 50 
s 

if 
1' 
1' i\ 

- 

1 *° i 
i\ 

| 30 

t- 
20 

\ \ 
\ \ 

^^ 

10 

0 
, , , , , , , 

)          200 400 600 800       1000 
Time 

1200 1400 1600 1800 

25 

20 . 

15 \ - 
10 ■ 

5 
£ 

UJ 
0 

-5 

/V ^ 
/\ r 

-10 I 
-15 I 
-20 

, 
)          20C 4O0 600 800       1000 

Time 
1200 1400, 1600 1800 

Figure 15. Gamma network for Boiling Water Example Figure 16. Abstraction error in Gamma network 

4. Sample System II: Hematopoiesis Model 
Though the abstraction methods discussed so far were good at 
linear system abstraction, non-linear system abstraction is quite 
different. In this section, we show how these abstraction meth- 
ods perform under nonlinear conditions. 

There are many acute physiological diseases where the ini- 
tial symptoms are manifested by an alteration or irregularity 
in a control system which is normally periodic, or by the onset 
of an oscillation in a hitherto non-oscillatory process. Such 
physiological diseases have been termed dynamical diseases 
by Glass and Mackey [36]. 

Our model deals with the regulation of hematopoiesis, the 
formation of blood cell elements in the body. Hematopoiesis 
is the process of blood creation in the body. White and red 
blood cells are produced in bone marrow. From the marrow 
they enter the blood circulatory system. As the oxygen level 
decreases in the body, there is a feedback to the bone mar- 
row—which produces more cells. 

4.1 Structural Abstraction 

Mackey and Glass [37] provide a delay model for hemato- 
poieses of the following form: 

dP(f) _    kff'Pit-T) 
-gPif) (7) dt        g»+ p»'(r _ 7) 

where, X is the flux of cells into the blood stream, P(t) is the 
concentration of cells (the population species) in the circulat- 
ing blood (cells/mm3), g is day', cell loss rate per clay, 8 is 
positive constant, and Tis maturation delay. 

Difference and differential equations are often used in simu- 
lation to model low-level phenomena. While the hematopoie- 
sis process can be modeled with the usual differential equa- 
tion techniques, we need a method for incorporating the delay 
'/'between the initialization of cellular production in the hone 
marrow and (he release of mature cells into the bloodstream, 

since a state variable's value will stay fixed for a time period. 
We use X as an input. Depending on the maturation delay T, 
we can generate different solutions. Figure 17 displays the time 
trajectory for the total concentration of blood cells between 
times 0 to 600 when the delay T= 6 days. As the delay moves 
upward to T = 20 days, we find a nonperiodic trajectory in 
Figure 18. 

Structural abstraction can be defined by a phase graph de- 
picting P{t) against P{t - 20) as shown in Figure 19. The be- 
havior of the system can be divided into two phases: 
OUTSIDE_ATTRACTOR and INSIDE_ATTRACTOR. The 
concept of basins of attraction is a well-formed concept in 
nonlinear dynamics. In OUTSIDE_ATTRACTOR, the system 
shows an approximately linear behavior, while, in 
INSIDE_ATTRACTOR, chaotic behavior appears in the sense 
that solution pattern is not repetitive in any regular way. Based 
on this observation, we define structural abstraction of the he- 
matopoiesis model by the following two levels. 

• Level 1: FSA, defines the chaotic behavior of the 
system by two phases, OUTSIDE_ATTRACTOR and 
INSIDE_ATTRACTOR 

• Level 2: Equation model, subdefines both 
OUTSIDE_ATTRACTOR and INSIDE „ATTRACTOR 
phases by equations. 

In [7] we describe a method for determining the boundary of 
an attractor basin for a pendulum with Hamiltonian dynamics. 
Other methods exist as well for approximating the boundary 
geometry. For this problem, we will assume that the boundary 
has been calculated by one of these means. The top level of 
Figure 20 shows FSA net for Level 1. Transition fires when 
predicate p becomes true. /; is defined to be true when the phase 
point pit), p{t - 20) is within the attractor and p is otherwise 
false. We use equation 7 for the subdefinition of both 
OUTSIDE,A'lTRACTOR and INSIDE   ATTRACTOR. 
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Figure 17. Cell concentration versus time for delay 7=6 days. Figure 18. Cell concentration versus time for delay T= 20 days. 

Figure 19. Phase graph for delay T = 20 days. 

4.2 Behavioral Abstraction 

Since we are interested in abstracting the time dependent be- 
havior of cell concentration in the circulating blood, we will 
restrict out experiments to dynamic-behavioral abstractions. 
Also, to see how abstraction techniques perform under heavy 
nonperiodic and nonlinearity conditions, we choose matura- 
tion delay 20. Now, the dynamic-behavioral abstraction of he- 
matopoiesis model is to approximate equation 7 with a dis- 
crete model of the form 

P(0=f(P(l- 1) P(t-na)) (8) 

where/is a nonlinear function to be estimated with order na. 
Small sampling period for the discretization makes the or- 

der of the discrete model very high due to the long depen- 
dence of/'(0 on /'(/ - 20), which results in numerical difficulties 

7P(P(0,P<t-20)) 
\ p(P(t),P(l-20» 

^•'.•P°-20».J     INSIDE. 

7P(P(t).P(l-20))\     ATTRACTOR 

Mackey & Glass 

Equation 

Mackey & Glass 

Equation 

Figure 20. Structural abstraction of hematopoiesis model 

to compute the optimal function of/ Therefore, increasing 
sampling period is needed as long as the discretization is not 
too rough. Figure 21 displays the time trajectory for the total 
concentration of blood cells when the sampling period is in- 
creased by 100, which introduces more nonlinearity and insta- 
bility. We choose Figure 21 as the abstraction target and use X 
for input. 

4.2.1 System Identification. A commonly used parametric 
model is the ARX model: 

y(t) + aty(t - 1) + ... + a:j(t - na) 

= b{u(t - nk) + b,u(t -nk- 1) + ... 

...+ bji{t - nk - nb + 1) + e(i) . 

(9) 

Variables na and nb are the orders of the respective polynomi- 
als. The number nk is the number of delays from input to out- 
put. We attempted to abstract the hematopoiesis model with a 
linear ARX model by varying NCI. nb, and nk, but the results 
were not satisfactory as shown in Figure 22. Nonlinear model 
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Figure 21. Hematopoiesis model for delay ■= 20 days with 
increased sampling period: abstraction target 

Figure 23. Abstraction error in ARX model 

I'-iRiire 25. Abstraction error in AÜA1.INR network 
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Figure 22. ARX model for hematopoiesis model 

Figure 24. ADALINE network for hematopoiesis model 

Figure 26. The wavelet network (Dashed arrows figure output 
connections to other wavelons) 
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MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


